
Procedural Progression Model for Smash Time
João Catarino

INESC-ID & Instituto Superior Técnico
University of Lisbon, Portugal

jcbpc@tecnico.pt

Carlos Martinho
INESC-ID & Instituto Superior Técnico

University of Lisbon, Portugal
carlos.martinho@tecnico.pt

Abstract—This paper addresses the problem of improving the
player experience in single player endless games and encouraging
the player to be engaged with procedurally generated content
for longer periods of time. We present a model in which the
procedural content generation process takes into consideration
the dynamics of two dimensions of the player experience: the
performance of the player when overcoming the challenges
created by the game, and the variety of challenges presented
to the player over time. We discuss the implementation of the
model in the endless mode of the mobile game Smash Time, and
describe how its evaluation supports that the model was able to
increase both the number and duration of play sessions as well
as having a better game experience reported by the participants,
when compared to the original game. These results suggest that
this approach could improve replayability and, as a consequence,
the lifetime of a digital game.

Index Terms—Player Skill, Content Variety, Progression Mod-
elling, Procedural Content Generation, Dynamic Difficulty Ad-
justment, Player Modelling, Digital Games.

I. INTRODUCTION

Most endless single player games generate content based on
a difficulty setting whose parameters are tuned based on pre-
launch playtesting or post-launch on-going analytics and such
parameters are typically the same for all the players playing
the game at a certain point in time. To improve each play
experience, we should provide means for the game to adapt to
the individual characteristics of each player, and keep them in
Csikszentmihalyi’s flow channel [1] at all time, ensuring that
the players never get bored because they have to perform a
task well below their skill, or get anxious as they have to deal
with a task too difficult for their skill level.

To address this issue, we propose a progression model that
procedurally creates content not only based on the inherent dif-
ficulty of each challenge but follows a player-centric approach
that takes both the player’s skill as well as the player’s famil-
iarity with each type of challenge into account. Overall, this
is achieved by tagging the challenges when they are created
and tracking player performance while interacting with the
challenges associated with these tags. By choosing challenges
according to the desired skill and variety progression curves
associated with their associated tags, we hypothesize this will
create a more engaging play experience and promote more
frequent and longer play sessions with the game. To validate
our approach, we integrated our model in the endless mode of
the mobile game Smash Time, a smasher game with more than

250K downloads on the iOS, Android and Windows Phone
platforms.

II. RELATED WORK

Procedural Content Generation (PCG) is the process in
which computer software algorithmically generates, on the
fly, game content with limited or indirect user input [2] [3].
The algorithmically generated game content can be anything
from dungeons and levels [4], game rules [5], 2D textures
and 3D models, characters and items, vegetation [6], weapons
[7], music, side quests and story [8], etc. Focusing on the
player experience to modulate the generation of effective and
meaningful content, Yannakakis and Togelius [9] proposed a
framework for PCG driven by computational models of user
experience based on the personalization of user experience
through affective and cognitive modelling combined with real
time adjustment of the content according to user needs and
preferences.

The player is the main element when we talk about the
experience created by a game. In order to develop good games
with mechanisms that boost the experience, we need to have a
good understanding of the player: motivations such as needs,
preferences, interests, expectations, values, fears and dreams;
limitations; capabilities; knowledge; and the context in which
they play a game, e.g. with whom, where and when they play
a game. Gathering this information, we are able to create
a player profile that will be useful to create better game
experiences [12]. As Chen [13] points out, each player is
different and experiences the same games in different ways,
due to their personality, skills and expectations when playing
a game. To satisfy different types of players, the game should
be able to adapt itself to the preferences of the player.

Cook [14] describes the player as an “(...) entity that is
driven, consciously or subconsciously, to learn new skills high
in perceived value”. In this context, a skill is a behavior that
a person uses to manipulate the world. Cook states that, when
players learn something new and can use that knowledge
to successfully manipulate the environment for the better,
they experience joy and gain pleasure for that achievement.
Furthermore, to create enjoyable play experiences, the game
should demand full concentration from the player because
when a person needs most of his/her skills to deal with a
challenging situation, his/her attention is completely absorbed
by the activity in question leaving no excess attention and
focus to process anything else besides that activity [1].

978-1-7281-1884-0/19/$31.00 ©2019 IEEE

Shaker et. al [15] [16] demonstrated how to collect players’
data to accurately model player experience and tailor game
content generation according to the player behavior. They
propose the use of Active Learning for player experience mod-
elling. With this technique, the learning algorithm is allowed to
select the data to learn from, significantly reducing the amount
of data needed for training the player model. A data set from
hundreds of players of Infinite Mario Bros1, related to content
features, gameplay features and reported player experience,
was used to learn models of player experience through an
active learning approach. Even though our work is focused
in modeling the player’s skill progression and the goal of
this work is to create models of player’s experience, using
concepts like challenge and frustration, both use online content
generation with the data being collected as needed in real time,
with the goal of providing a better gameplay experience to the
players. Bakkes et. al [10] and Blom et. al [11] also used the
Infinite Mario Bros video game to personalize the play space
to tailor the experienced challenge and the affective game
experience of the individual user respectively. Both models
focus on player experience while our proposed model focus
on player skill.

Pereira [17] developed a progression modelling tool for an
endless runner game allowing a game designer to specify
the conditions that will unlock new challenges and game
mechanics according to the player’s mastery over other chal-
lenges and mechanics in the game. Skill mastery is represented
as a set of categories (e.g. uninitiated, partially mastered,
mastered, among others) inspired by the work of Cook, and
tracked while the player uses the mechanics to overcome the
different challenges procedurally generated by the game. The
progression is guided by preset adaptation rules created by
the game designer as a progression graph that specifies how
challenges and mechanics should be considered in the PCG
process according to the player’s skill evolution.

Bicho and Martinho [18] proposed a progression model that
takes player skill progression as its core feature. Players have
a set of actions, called mechanics, available to overcome the
presented challenges, and player performance is defined in
terms of mechanics and associated challenges. This means
one player might have different success rates overcoming the
same challenge while using different mechanics. According
to player choices on which mechanics to use when facing
a challenge, the model will record skill progression using
pairs < challenge,mechanics >. Every time a challenge is
presented to the player, the model saves if the player succeeded
or failed at the challenge with the chosen mechanics. By
measuring the player performance on these dimensions, it is
possible to increase game difficulty on the dimensions the
player is better at, while at the same time pushing the players
to improve their skill on dimensions less explored. Bicho and
Martinho show that players tend to stick to certain approaches

1Markus Persson, “Infinite Mario Bros.” Super Mario Bros open-
source clone, 2008. Available at https://openhtml5games.github.io/games-
mirror/dist/mariohtml5/main.html

when overcoming a challenge even when using another would
make the challenge much easier.

Zook et al. [19] proposed a model for skill-based mission
generation that tries to solve challenge tailoring, i.e. “the
problem of matching the difficulty of skill-based challenges
over the course of a game to match player abilities”; and
challenge contextualization, i.e. the fact that the game should
provide appropriate motivating story context for the skill-based
challenges. To deal with the challenge tailoring problem, the
model must find a sequence of challenges that produce a
given progression of predicted player performance. To achieve
this, the game designer specifies a performance curve that
determines the wanted progression of the player’s performance
over the course of a mission.

In this work, we will consider each player individually, with
their own capabilities and limitations, and aim at providing a
distinct and personal play experience in each run. This will
be achieved through the creation and maintenance of a player
model that will keep track of how the player is gaining mastery
over the different dimensions of play. Rather than using a
dependency graph preset by the game designer, which may
become difficult to maintain as the amount of content increases
throughout development, all content will be unlocked from the
start and categorized using tags. The selection of the content
available by the PCG process at a certain point in the game
will be based on how the player mastery over theses categories
of play identified by the tags match the desired performance
at this point in the game, as specified by the game designer
through performance curves. This model will be updated over
the course of a game as well as between game sessions. With
this model, we expect each run to have a distinct feel while
being enjoyable for the player going back through the game.

III. SMASH TIME

Smash Time (see Fig. 1) has fast gameplay mechanics, that
result from the combination of elements from classic games
like Whac-A-Mole2 and Space Invaders3, mixed with puzzle
mechanics. Smash Time characters are enemies, animals and
heroes, that coexist in the same world. Enemies enter the
screen from the top and both sides and try to attack both the
hero that is at the bottom of the screen, helping the player, as
well as the animals that are trying to escape. The player goal
is to smash the enemies and clear all the incoming waves. To
smash one enemy and receive points for it, the player must
tap on the enemy with a finger.

The progression model developed in this work was imple-
mented using the Unity game engine on top of the Arena game

2The Whac-A-Mole arcade game (Creative Engineering Inc, 1976) consists
of a large cabinet with five holes in its top and a large black mallet. Once the
game starts, the moles begin to pop up from their holes at random. The goal
of the game is to force the moles back into their holes by hitting them on
the head with the mallet. The more quickly this is done the higher the final
score will be.

3Space Invaders (Taito, 1978) is a shooter in which the player controls
a laser cannon by moving it horizontally across the bottom of the screen
and firing at descending aliens. As more aliens are defeated, their movement
speeds up. Defeating the aliens brings another wave that is more difficult, a
loop which can continue without end.

Fig. 1. Snapshot from Smash Time, Arena mode (endless game mode)

mode of Smash Time. In the Arena mode, players try to play
for as along as possible and reach their highest score possible,
on an infinite level with a timer. According to the player’s
performance at killing enemies in special sequences, a special
enemy may appears that will extend the timer if smashed.

IV. PROGRESSION MODEL

Our approach is anchored on three main concepts – Chal-
lenges, Obstacles, and Tags – used by the three main compo-
nents of the progression model: the Player Performance Model,
the Content Variety Model and the Content Generation Model.

A. Challenges

Challenges are formations created by the game designer
with one or more paths (wave paths) that guide the movement
of the obstacles that will compose the challenge. The game
designer creates a library of challenges that are stored as Unity
prefabs (game objects with components and properties that can
be used as templates to create new object instances in real
time) to be used by the progression model during gameplay.
A challenge is composed by a set of waves that spawns a set
of obstacles that will move with a certain speed (challenge
pace) in a specific wave path. A wave path is defined by a set
of waypoints (intermediate points that are connected to form
the path that will be followed by the obstacles of the wave)
that are specified by the game designer. The quantity and type
of each wave’s obstacles, as well as the challenge pace are
defined by the progression model in real time.

B. Obstacles

An obstacle is something that requires players to use their
skill to overcome. In Smash Time Arena, the obstacles are
enemies: Red, Green, Blue and Purple. When the player taps
on an enemy, it smashes it and removes it from the game,

but may spawn another enemy as a result of being smashed.
Fig. 2 illustrates this process. We consider that an obstacle is
completely overcome when the Purple and last enemy in the
chain is smashed and removed from the game.

Fig. 2. Overcoming obstacles in Smash Time Arena: when Red is smashed,
it spawns Green before being removed from the game. Similarly Green will
spawn Blue that will spawn Purple.

C. Tags
Our progression model uses a set of tags to categorize the

challenges and obstacles of the game. The different tags are
freely created by the game designer and inform the progression
model to keep track of these dimensions as they will be
important for the modulation of the game experience. When a
player interacts with content in the game, each tag associated
with the content will be updated to reflect how successful the
player has been at overcoming content with this tag and how
often the player has encountered content with such tag. In
Smash Time Arena, tags are themselves organized in four
groups: Obstacle (e.g. Red, Green), Pace (e.g. Moderate or
Fast), Taps (e.g., Taps1-3, Taps4-6) and Game Designer tags
(e.g. TargetHero, Gate).

Fig. 1 depicts an example of a procedurally generated
challenge. This challenge is composed by 6 different initial
obstacles, 4 purple enemies and 2 blue enemies, moving at a
slow pace from the top of the screen towards the hero at the
bottom. The tags of this challenge are: Obstacle = {Purple,
Blue}; Pace = {Slow}; Taps = {Taps7-9}; and Game Designer
= {TargetHero, DownLine}.
D. Progression Model Overview

Fig. 3 depicts the architecture of the progression model and
how it is integrated into the game loop of Smash Time Arena,
which repeats the following steps:

1) Generate a challenge to present to the player, based on:
• the Challenge Library;
• the prediction of player performance based on the

Player Performance Model;
• how recently the player interacted with content

based on the Content Variety Model.
2) Register the player response when dealing with the

obstacles that compose the generated challenge;
3) Analyze the player performance through the recorded

player actions relative to the generated challenge;
4) Record the player performance data in the Player Per-

formance Model;
5) Record the challenge variety data in the Content Variety

Model;
6) Repeat from step 1.

PLAYER
PERFORMANCE

MODEL

Player
Performance

Data

Player
Performance

Predictive
System

Player
Performance

Analyser

TAGS

Obstacle

Pace

Taps

Game Designer

CONTENT
VARIETY
MODEL

Content
Variety

Data

PROGRESSION MODEL

CONTENT

GENERATION

MODEL

+

GAMEPLAY

CHALLENGE
LIBRARY

GAME
CONTENT

PLAYER

Fig. 3. Progression Model Overview

E. Content Generation

The Content Generation Model uses both the Player Per-
formance Model and the Content Variety Model to generate
engaging and challenging content throughout a game session.
Fig. 4 shows the game content generation process.

The Content Generation Model is used to generate a new
challenge at the beginning of a new run. From then on, a new
challenge is generated every time there is only one obstacle
left from the last generated challenge.

Content generation is divided into the following steps:
1) Generate a new population of 50 random meta-

challenges. For performance reasons, the challenges
themselves are not actually instanced. Only the param-
eters (meta-data) that will control the future creation of
the actual challenges from the prefabs are manipulated at
this stage (hence the designation meta-challenge). This
meta-data includes the list of tags assigned with the
challenge, the predicted player performance and how
novel the content is according to interaction history,
and is used to compute the challenge utility value. The
meta-data created is also linked to the respective selected
prefab in the challenge library.

2) Refine the new population of meta-challenges. Each
meta-challenge is attributed random content for each
wave: the number of wave obstacles; the type of each

Fig. 4. Content Generation Overview.

obstacle, and; the order of the obstacles in the wave.
The tags associated with the type of obstacle are then
associated to the meta-challenge. The next step is to
count the number of taps required to overcome all the
obstacles in the wave, and assign the respective tag
to the meta-challenge (e.g. if 2 taps are required, then
the Taps1-3 Tag is attributed). A random pace is then
attributed to the meta-challenge and the respective tag
associated with it. The challenge pace is then assigned
to all obstacles of each wave of the challenge. Finally,
the Game Designer Tags associated with the challenge
are copied from the original challenge in the challenge
library to the meta-challenge, as well as to each wave
of the challenge to be later set on each obstacle when
spawned.

3) Select the next best meta-challenge: calculate the utility
of all meta-challenges using an heuristic evaluation
function based on desired content variety and desired
player performance and select the meta-challenge with
the highest utility to be instanced and presented to the
player by the Content Generation Model. The heuristic
evaluation compares: the current point on the perfor-
mance curve defined by the game designer with the
predicted performance of the player based on the Tags
associated with the meta-challenge, and; the current

point on the variety curve defined by the game designer
with the history of interaction of the player with the
Tags associated with the meta-challenge. These will be
detailed in next sections.

4) Generate and activate a new challenge based on the
meta-challenge selected for its highest utility. The Con-
tent Generation Model copies all the data from the
chosen meta-challenge to the corresponding challenge
prefab from the library and activates the new challenge.

5) Clean all data from the population of meta-challenges
and reuse them in the next iteration.

F. Modelling Player Performance

The Player Performance Model was designed to evaluate
the player’s skill, support the generation of game content
that matches the player’s skill, and keep the game constantly
challenging for the player. It uses in-game collected data to
continuously adapt the challenges and their skill level to each
individual player.

To that end, the Performance Model only requires the game
designer to specify a performance curve, that will shape the
progression of the player’s performance over the game session.
Fig. 5 shows the performance curve used for the evaluation of
our model in Smash Time Arena Mode.

Performance(C) =
sin(C/2))− 0.01C + 3

4

Fig. 5. Player performance curve. The curve defines what is the expected
performance (between 0 and 1) of the player over time.

Measuring Performance. The performance value associated
with a challenge represents the player’s skill at overcoming the
obstacles that compose the challenge. This value is computed
as the weighted sum of the performance value of all the Tags
associated with the challenge (Game Designer, Pace, Taps,
Obstacle). The Player Performance Model stores performance
data on each Tag associated with every challenge generated
and presented to the player. Each Tag stores how the player
performed when interacting with the last N (= 10 in our
implementation) challenges having this Tag associated. Each
Tag starts with an initial performance value measured during
playtest with both new users to the game and experienced
players, which will be progressively replaced by the real player
data obtained during gameplay.

While the performance of Obstacle Tags is analyzed for
each obstacle individually, the performance of the other Tags
(Pace, Taps, Game Designer) is based on the overall per-
formance with all the obstacles in the challenge, using a

performance metric called TapsScore (TSc), that is the ratio
between the taps successfully performed on all obstacles in
a challenge c, and all the taps needed to overcome all the
obstacles of said challenge:

TSc = TapsDonec/TapsNeededc

The value of TSc is then assigned to the Pace Tag (Ppac),
Taps Tag (Ptap) and Game Designer Tags (Pdes) performance
values and recorded in the performance history of each tag.

The performance Po of the player relative to an obstacle o
reflects if the player was able to surpass it (enemy smashed,
Po = 1) or not (enemy escaped or attacked the hero, Po = 0).
After one obstacle is overcome or not by the player, Po is
assigned to that obstacle, and recorded in the history of the
correspondent Obstacle Tag assigned to the challenge to which
the obstacle belongs to.

An obstacle is considered to be overcome when all the
obstacles that are spawned from it4, if there are any, are
overcome. The final performance value of each Obstacle
Tag of the challenge is calculated with the average of all
the recorded obstacle performances with the same tag and
recorded in the player performance data. The final performance
value of all the Obstacles Tags is equal to the average of the
individual performance of each Obstacle Tag.

The performance Pc assigned to the challenge c is calculated
using the following formula, where (WP)T is the weight of
the category of tag T when computing performance (in our
final implementation, we used 0.25 for all weights):

Pdes = Ppac = Ptap = TSc, Pobs =
1

N

N∑
i=1

Poi

Pc = Pdes ∗ (WP)des + Ppac ∗ (WP)pac+

+Ptap ∗ (WP)tap + Pobs ∗ (WP)obs

Every time a challenge is deactivated, its tags’ performances
are calculated and registered in the Player Performance Model
and used to calculate and assign, with the previous formula,
an overall performance value Pc to the challenge.

Predicting Performance. When the Player Performance
Model needs to estimate the player performance against a new
challenge to evaluate its adequacy in terms of the performance
curve, we use the same formula that is used to compute the
performance of the player in a challenge, but use the estimated
performance of each tag, calculated as the average of the last
N = 10 recorded player performance with that tag.

G. Modelling Content Variety

The rarity of a challenge represents its novelty and is defined
by the rarity of its associated Tags. The rarity of one specific
Tag is calculated by the frequency of its appearance in the
game compared to the total count of already used Tags. This
means the more often a tag was used, the closer to 0 its rarity

4Remember that smashing an enemy can spawn another different enemy.

value is and, on the opposite side, the less a tag was used,
the closer its rarity value is to 1. Hence, when a player starts
a new game run, all the tags start with a rarity value of 1,
because they were never presented to the player.

In the same way the game designer has the task to define a
performance curve, he/she also has the task to define a variety
curve, that will shape and guide the progression of gameplay
in terms of variation of the game content that is generated
by the Content Generation Model. Fig. 6 shows the variety
curve used in our implementation of the progression model as
an example of a possible variety curve defined by the game
designer.

Rarity(C) =
sin(C2) + 1

2

Fig. 6. Content variety curve. The curve defines how familiar or novel
(between 0 and 1) the content is expected to be to the player over time.

The rarity RT of a tag T is calculated by counting the
appearance of the tag in the challenges (most recently) met,
using the data stored in the Content Variety Model as shown
if the following formula:

RT = 1− (RecentUsageCountT /HistorySize)

Using each tag’s individual rarity value, the Content Variety
Model is able to assign a rarity value Rc to a challenge c
using the following formula, where (WR)T is the weight of
the category of tag T when computing rarity (in our final
implementation, we used 0.25 for all weights):

Robs =
1

N

N∑
i=1

Roi

Rc = Rdes ∗ (WR)des +Rpac ∗ (WR)pac+

+Rtap ∗ (WR)tap +Robs ∗ (WR)obs

V. EVALUATION

This section describes the evaluation process used to vali-
date our progression model. We present the procedures, results,
changes and insights for each moment of the evaluation.
We start by describing the preliminary evaluations that took
place during development, then we detail the qualitative and
quantitative evaluations that were made to evaluate the final
version of the progression model.

A. Preliminary Evaluations

We performed evaluations with real users, both novice and
expert players at several points in the development process;
more specifically, we had 7 people involved over a process of
5 iterations that took 5 weeks. This initial evaluations had the
following objectives:

• Test the performance of the progression model;
• Test the reaction time of the progression model to the

evolution of the player’s skill level;
• Test players reactions obtained from the gameplay expe-

rience with the progression model;
• Get the initial values of the player performance to be used

in the final version of the Player Performance Model;
• Tune the performance curve that defines the desired

player skill evolution;
• Tune the variety curve that represent the desired content

variety progression;
• Tune all parameters of the components from the progres-

sion model.
1) Procedure: The experiments started with an informal

playtest of the revised Arena Mode on a mobile phone,
followed by an unstructured interview with the participants
to collect all type of qualitative feedback. The participants
were not told that the game would be trying to adapt to them.
At the end of each playtest session, all recorded values were
collected and gathered to inform the progression model being
developed.

2) Results and Changes: The experiment was repeated until
we reached a point where the performance values assigned to
each Tag in the Player Performance Model, when starting the
game, represented a good starting point for new players.

The experiment also allowed us to tune the amount of data
that would be recorded in the Player Performance Model.
Although we started initially by recording all the data from
the game (which is reasonable for a single play session) we
ended up settling on a history window of the 10 most recent
challenges. The model would take into account only the most
recent experience of the player (both in terms of performance
and content variety) and ignore what happened earlier, which
we verified was no longer relevant for assessing player skill
or their perception of novelty. This would additionally insure
memory usage would only increase proportionally to the
number of Tags and data would never become too large to
slow the game down on the targeted mobile phone.

Finally, we decided to group all Tags associated with the
number of Taps required to overcome a certain challenge in
sets of 3 rather than individually (e.g. Taps1-3, Taps4-6). This
was a good compromise between update frequency (insuring
all data is recent and reflect player skill) and challenge
differentiation in the Player Performance Model.

B. Final Evaluation

After having adjusted all the parameters of our progres-
sion model, we proceeded to qualitatively and quantitatively
validate our approach. The objective of this evaluation was to

test if the progression model is able to adapt to all players and
provide enjoyable and challenging play experiences every time
a player starts a new game, resulting in longer play sessions.

1) Procedure: To validate our approach, we compared the
developed Player Performance Model to the progression used
in the original game and, as such, tested two different versions
of the Arena Endless Mode of Smash Time:

• Smash Time “O”: original progression model in the game
on the stores at the time of the evaluation, in which the
difficulty of the challenges was tuned to the duration of
the game session;

• Smash Time “N”: version including the Player Progres-
sion Model described in this paper.

32 participants took part in this study: 87.5% gamers
(participants that play games casually when the opportunity
presents itself or reserve time in their schedule to play games),
65.6% with experience in games of the same genre, and 46.9%
with previous experience with the original Smash Time game.
16 participants were randomly attributed to each condition.

Playtest started with a brief presentation of Smash Time, as
participants were informed they would have to play the game
and answer to a short questionnaire afterwards. Participants
were never told what was actually being tested. After the
presentation, the participants played the first three campaign
levels, that serve as the game tutorial. During this time, the
participants were encouraged to ask any questions. We then
made a short demonstration of the Arena Mode, focusing
on the time mechanics and how players could extend time
and achieve better scores. Once again, the participants were
encouraged to ask any remaining questions before starting the
actual playtest.

All participants used the same tablet device during the tests
and could play the game for as much or as little as they
wanted, without any intervention from the researcher (except
if explicitly requested). After a participant would stop playing,
they would be asked to fill the Game Experience Questionnaire
(GEQ) [20]. Finally, an unstructured interview would take
place to gather some additional feedback. The researcher
would then gather the game data automatically tracked by
the game and accessible directly on the device through the
SRDebugger Tool5, relative to: total playtime; number of
games started; number of times a hero was hit; number of
times a game ended with a timeout, and; number of times the
user quit the game, and fill an online form with the Collected
Game Data. Both the Collected Game Data and the data from
the Game Experience Questionnaire were exported to a CSV
file and imported into IBM SPSS Statistics 24 for analysis.
Our hypothesis was that the experience reported by the GEQ
and both playtime and number of games played would be
significantly statistically different in the two conditions.

2) Results:
a) Collected Game Data: A Mann-Whitney U statistical

test performed on the previously mentioned variables revealed

5Stompy Robot, SRDebugger - Unity Console & Tools On-Device, 2015.
Available at https://www.stompyrobot.uk/tools/srdebugger

statistical significance on: playtime (U = 39, p < 0.001),
number of games started (U = 28, p < 0.001) and, number of
times a game ended with timeout (U = 29, p < 0.001). The
Mean Ranks in both conditions suggests Smash Time “N” got
better results that Smash Time “O” on these dimensions. The
median values of the four variables of the collected game data
are presented in Table I.

Version “O” Version “N”
Game Data
Playtime (seconds) 381.5 910.0
Games started count 2.0 4.0
Hero attacked game ended count 0.5 1.0
Timeout game ended count 1.0 3.5
GEQ Components
Competence 4.0 3.7
Sensory and Imaginative Immersion 3.17 3.67
Flow 3.3 3.8
Tension / Annoyance 1.0 1.3
Challenge 2.7 3.3
Negative Affect 1.0 1.5
Positive Affect 4.0 4.4
GEQ Selected Items
I found it tiresome 0.0 1.0
I found it impressive 2.0 3.0

TABLE I
MEDIAN VALUES OF THE COLLECTED GAME DATA VARIABLES AND GAME

EXPERIENCE QUESTIONNAIRE (GEQ)

b) Game Experience Questionnaire: We compared the
dimensions of experience rated by the seven components of
the GEQ “Core Module” [20]. None of these components
presented statistical significance on a Mann-Whitney U test.
Two items, however, where found statistically significantly
different: “I found it tiresome” (U = 70.5 , p < 0.05)
and “I found it impressive” (U = 74 , p < 0.05). These
results suggest the participants felt Smash Time “N” was more
impressive but also more tiring in comparison with Smash
Time “O”. The median values of the components and two
items are presented in Table I.

3) Summary: The evaluation performed suggests that the
Player Progression Model described in this paper could be a
good approach to be used in future updates to the original
game, as well as in other endless single player digital games.
Players did play the game more times and for longer periods
of time, which were the two main objectives of our work.
The feedback received through the GEQ also suggests players
found this approach more impressive and challenging than
the original game, which progression model increased the
difficult of the game based on the duration of a game session,
through the use of preset rules. Therefore, we believe to have
developed a robust and dynamic progression model that takes
into account player skill and content variety to create an
adapted play experience that does not disrupt from the original
game and may well improve it, while removing the burden of
specifying the exact parameters of content progression from
the game or level designer.

VI. CONCLUSIONS

In this paper, we presented a skill-based progression model
for endless single player digital games based on player per-
formance and content variety, that creates more challenging
and engaging play experiences for the player, leading to an
increase in the duration of play sessions. We presented a case
study of the model in “Smash Time”, a mobile smasher video
game commercially available, to support the adequacy of the
approach.

Our approach consists in creating a player model that
explicitly tracks both the player skill progression as well as
the variety of the content the player experiences through play.
This information is used to control the pace of the challenges
building the experience based on player performance, alternat-
ing between the tension of new and known but harder versions
of previously visited challenges and the relaxing interaction
with challenges that have already being overcome but are still
interesting for the player.

To support our approach, we presented an experiment with
both novice and experienced players, that played a version of
“Smash Time” with the initial parameters of our progression
model tuned after a short exploratory study. The goal of the
experiment was to test how enjoyable the play experience cre-
ated by our progression model is for players and whether play
sessions using our approach are longer. Both quantitative and
qualitative data was gathered: players filled a game experience
questionnaire and in-game data was automatically tracked.
The results suggest we were able to successfully increase
both the duration of each game session and the number of
times a game is started by the player, by quickly bringing
the players into a flow channel adequate to their skill, and
keeping them inside that channel with content that is neither
boring or frustrating while varied. By providing an alternate
progression model to traditional games, one that is always
different but adapted and consistent to the player performance,
we also increased replayability. We also believe (although this
still has to be experimentally verified) that the approach could
“ease-in” players returning to the game after some time away
from it.

This approach also has a strong impact on the game
development process: it reduces the time game designers have
to spend fine-tuning the parameters of their games and the
rules controlling content presentation through the game, e.g.
the probability of certain challenges appearing at certain levels,
as was the case in the original version of the test-bed game.
According to the informal interviews with the game designers
that worked on the original version of the progression of
Smash Time, it took around 6 months of playtest and pa-
rameter tweaking to fine tune the progression model, when
compared to the 5 weeks we took to implement the proposed
progression model. Finally, we believe the approach could be
applied to other games of the same genre and even ported
to other genres by carefully redefining the core concepts of
Challenge, Obstacle and Tags in the design space of the new
genre, while maintaining the same approach.

ACKNOWLEDGMENTS

This work was supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) with reference
UID/CEC/50021/2019.

REFERENCES

[1] M. Csikszentmihalyi, Flow: The Psychology of Optimal Experience.
Harper & Row, 1990.

[2] J. Togelius, E. Kastbjerg, D. Schedl, and G. N. Yannakakis, “What is
procedural content generation?: Mario on the borderline” in Proceedings
of the 2nd International Workshop on Procedural Content Generation in
Games, p. 3, ACM, 2011.

[3] J. Togelius, A. J. Champandard, P. L. Lanzi, M. Mateas, A. Paiva, M.
Preuss, and K. O. Stanley, “Procedural content generation: goals, chal-
lenges and actionable steps” in Dagstuhl Follow-Ups, vol. 6: Artificial
and Computational Intelligence in Games, pp. 61–75, 2013.

[4] N. Shaker, J. Togelius, A. Liapis, R. Lopes and R. Bidarra, “Constructive
generation methods for dungeons and levels” in Procedural Content
Generation in Games: A Textbook and an Overview of Current Research,
Springer, Chapter 3, pp. 31-55, 2016.

[5] M. J. Nelson, J. Togelius, C. Browne, and M. Cook, “Rules and
Mechanics” in Procedural Content Generation in Games: A Textbook
and an Overview of Current Research, Springer, Chapter 6, pp. 99-121,
2016.

[6] N. Shaker, J. Togelius, J. Dormans, “Grammars and L-systems with
applications to vegetation and levels” in Procedural Content Generation
in Games: A Textbook and an Overview of Current Research, Springer,
Chapter 5, pp. 73-98, 2016.

[7] W. Yin-Poole, ”How many weapons are in Borderlands 2?”,
https://www.eurogamer.net/articles/2012-07-16-how-many-weapons-
are-in-borderlands-2, 2012.

[8] Y. Cheong, M. O. Riedl, B. Bae and M. J. Nelson, “Planning with
applications to quests and story” in Procedural Content Generation in
Games: A Textbook and an Overview of Current Research, Springer,
Chapter 7, pp. 123-141, 2016.

[9] G. N. Yannakakis and J. Togelius, “Experience driven procedural content
generation” in IEEE Transactions on Affective Computing, vol. 2, Issue.
3, pp. 147–161, IEEE, 2011.

[10] S. Bakkes, S. Whiteson, G. Li, G. V. Vişniuc, E. Charitos, N. Heijne and
A. Swellengrebel, ”Challenge balancing for personalised game spaces”,
in IEEE Games Media Entertainment, 1-8, 2014

[11] P. M. Blom, S. Bakkes, C. T. Tan, S. Whiteson, D. Roijers, R. Valenti
and T. Gevers, ”Towards Personalised Gaming via Facial Expression
Recognition”, in Proceedings of the Tenth Annual AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment, 2014

[12] C. Martinho, P. Santos, and R. Prada, ”Design e Desenvolvimento de
Jogos”, ch. 4. Lisboa, Portugal: FCA, 2014.

[13] J. Chen, “Flow in games (and everything else)” in Communications of
the ACM, vol. 50, No. 4, pp. 31–34, ACM, 2007.

[14] D. Cook, “The chemistry of game design.”
https://www.gamasutra.com/view/feature/129948/
the chemistry of game design.php, 2007.

[15] N. Shaker, G. N. Yannakakis, and J. Togelius, “Towards player-driven
procedural content generation,” in Proceedings of the 9th conference on
Computing Frontiers, pp. 237–240, ACM, 2012.

[16] N. Shaker, M. Abou-Zleikha, and M. Shaker. 2015. ”Active Learning for
Player Modeling.” in Proceedings of the 10th International Conference
on the Foundations of Digital Games (FDG 2015), ACM, 2015.

[17] P. Pereira, “Modelling progression in video games.” MSc Thesis, Insti-
tuto Superior Técnico, University of Lisbon, 2016.

[18] F. Bicho, C. Martinho, Multi-dimensional Player Skill Progression
Modelling for Procedural Content Generation in Proceedings of the 13th
International Conference on the Foundations of Digital Games (FDG
2018), Article 1, pp. 1-10, ACM, 2018.

[19] A. Zook, S. Lee-Urban, M. R. Drinkwater, and M. O. Riedl, “Skill-
based Mission Generation: A Data-driven Temporal Player Modeling
Approach,” in Proceedings of the The third workshop on Procedural
Content Generation in Games, ACM, 2012.

[20] K. Poels, Y. A. W. de Kort and W. A. IJsselsteijn, ”D3.3 : Game Expe-
rience Questionnaire: development of a self-report measure to assess
the psychological impact of digital games.”, Technische Universiteit
Eindhoven, 2007.

