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Abstract

Gone are the days the content of a game was completely created manually and the gameplay was
pre-scripted before the game release. Nowadays an increasing number of games use procedurally
generated content to provide immersive and engaging gaming experiences. Most of the endless single
player games generate content just based on the difficulty of the challenges combined with the duration
of the current game session. Usually the difficulty setting is achieved through the adaptation of the
challenges to a sample of the players population, which leads to a similar gameplay experience to every
player and even to the same player in different game sessions.

In this dissertation, we address the problem of keeping the players engaged in a game for longer
periods of time generating game content that is modeled according to the player’s performance, to
improve the gameplay experience.

In order to increase the overall gameplay experience of a game, we should increase the feeling of
progression. To solve this problem we propose a progression model that creates content based, not
just on the difficulty of the challenges, but also based on the player skill and performance to overcome
those challenges. We also propose to control the variety of the challenges to create a better gameplay
experience. We theorize that, by providing a progression that is adapted to the player based on the player
skill, keeping the variety of the challenges will lead to more engaging and fun gameplay experiences,
increasing the replayability in single player games.

We propose a progression model that uses player skill and challenges’ variety, in the endless level of
the mobile game Smash Time, a smasher game with more than 250.000 downloads on the iOS, Android
and Windows Phone platforms.

With this dissertation, we believe to have created a skill-based progression model that is robust and
dynamic enough to be used in different types of games and that excludes the need of using preset
difficulty settings and/or adaptation rules.

The results from playtests with users suggest that the developed skill-based progression model is
able to increase the number and duration of the game sessions. The results also suggest that the
progression model has the potential to increase player immersion, and consequently to create more
engaging gameplay experiences. With the potential to create longer and more engaging gameplay
experiences as well as to increase their frequency, comes the possibility to, ultimately, increase the
overall lifetime of the game itself.

Keywords: player skill, content variety, progression, procedural content generation, dynamic difficulty
adjustment, player modelling
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Resumo

Longe vão os tempos em que o conteúdo de um jogo era completamente criado manualmente e
a jogabilidade era pré-programada antes do lançamento do jogo. Hoje em dia um número crescente
de jogos usam conteúdo gerado procedimentalmente para fornecer experiências de jogo imersivas,
envolventes e cativantes. A maioria dos jogos infinitos para um jogador geram conteúdo baseando-se
apenas na dificuldade dos desafios combinada com a duração da sessão de jogo. A configuração da
dificuldade é normalmente definida através da adaptação dos desafios a uma amostra da população de
jogadores, o que leva a experiências de jogo semelhantes para todos os jogadores e inclusive para o
mesmo jogador em sessões de jogo diferentes.

Nesta dissertação, abordamos o problema de manter os jogadores cativados e envolvidos num jogo
por perı́odos de tempo mais longos, gerando o conteúdo do jogo, modelado de acordo com a habilidade
e desempenho dos jogadores para melhorar a experiência de jogo.

Para melhorar a experiência global de um jogo, devemos aumentar o sentimento de progressão.
Para resolver este problema, propomos um modelo de progressão que cria conteúdo baseado, não
apenas na dificuldade dos desafios, mas também baseado na habilidade e desempenho do jogador
a ultrapassar esses desafios. Propomos também controlar a variedade dos desafios para criar uma
melhor experiência de jogo. Nós teorizamos que, fornecendo uma progressão que é adaptada ao
jogador baseada nas suas habilidades, mantendo a variedade dos desafios leva a melhores, mais
cativantes, envolventes e divertidas experiências de jogo, aumentando a repetibilidade dos jogos para
um jogador.

Propomos um modelo de progressão que usa a habilidade do jogador e a variedade dos desafios,
no nı́vel infinito do jogo de telemóvel Smash Time, um jogo do género smasher com mais de 250.000
downloads nas plataformas iOS, Android e Windows Phone.

Com esta dissertação, acreditamos ter criado um modelo de progressão baseado na habilidade do
jogador, que é robusto e dinâmico o suficiente para ser usado em diferentes tipos de jogos e que exclui
a necessidade do uso de configurações pré-definidas de dificuldade e/ou de regras de adaptação do
conteúdo.

Os resultados dos testes com utilizadores sugerem que o modelo de progressão desenvolvido, ba-
seado na habilidade do jogador, é capaz de aumentar o número e a duração das sessões de jogo. Os
resultados também sugerem que o modelo de progressão tem o potencial de aumentar a imersão do/a
jogador/a, e consequentemente de criar experiências de jogo mais envolventes. Com o potencial de
criar mais longas e envolventes experiências de jogo, assim como de aumentar a sua frequência, vem
a possibilidade de, em última análise, aumentar a vida útil do próprio jogo.

Palavras-Chave: habilidade do jogador, variedade de conteúdo, progressão, geração procedimental
de conteúdo, ajustamento automático de dificuldade, modelação do jogador
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Chapter 1

Introduction

1.1 Motivation and Problem

The processes used in game development are constantly evolving since the beginning of videogames
as they play each day a more important role in our lives. Millions of people have daily short gameplay
experiences with mobile games like Candy Crush Saga [1], Clash of Clans [2] and Clash Royale [3], as
well as long entertainment sessions with PC and console games such as World of Warcraft [4], League
of Legends [5] and Minecraft [6]. According to the U.S Entertainment Software Association (ESA), in
2017, 67 percent of American households own at least one device to play video games and the average
game player age is 35 [7]. With more people joining the videogames world and more games being
developed over the years, the games themselves need to adapt and evolve to meet the expectations of
the players. Due to their human nature, players will always want to be challenged and surprised when
playing a videogame and that is why generating immersive and engaging gaming experiences can be
the ultimate goal to achieve in modern game design and development.

In the past, most of the game content was created manually by the game designers and the game-
play has been pre-scripted before the game release. Although this method is still used nowadays, an
increasing number of video games are using procedurally generated content to provide more immersive
and engaging gaming experiences.

In this dissertation, we address the problem of keeping the players engaged in a game for longer
periods of time generating game content that is modeled according to the player’s skill and performance
and needs, to improve the gameplay experience. More specifically, we attempt to give answers to the
following question: how to generate game content to create more engaging gameplay experiences that
may lead to longer gameplay experiences.

1.2 Hypothesis and Approach

Most of the endless single player games generate content just based on the difficulty of the challenges
and usually the difficulty setting is achieved through the adaptation of the challenges to a sample of the
players population. This method leads to a similar gameplay experience on every player and even on the
same player in different game sessions, which can result in less fun and engaging experiences reducing
the replay value of the games. In this dissertation we address the problem of how can we generate
game content to create more engaging gameplay experiences.

In order to increase the overall gameplay experience of a game, we should increase the feeling of
progression. Csikszentmihalyi[8] concluded that a person’s skill and the difficulty of a challenge can
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create different emotional states on that person. He found that people become bored when dealing with
an easy task if their skill level is high and, alternatively, they become anxious when dealing with a difficult
task if their skill level is too low. Following Csikszentmihalyi studies and his definition of ”Flow Channel”
(Figure 1.1), one can conclude that a good and engaging game flow can be achieved by connecting, in
the same proportion, the player ability and the game difficulty by challenging the players according to
their skill. To solve this problem we propose a progression model that creates content based, not just on
the difficulty of the challenges, but also on the player skill to overcome those challenges.

Figure 1.1: Csikszentmihalyi’s Flow Channel.

As an extra element to create a better experience, we also propose to control the variety of the
challenges. The variety of a challenge represents its novelty, i.e., whether the challenge characteristics
have been previously presented to the player. This is achieved with the classification of the challenges’
pace, number of obstacles, game designer challenge description and type of obstacles that compose
the challenge.

We theorize that, by providing a progression that is adapted to the player based on his/her skill, keep-
ing the variety of the challenges, may lead to more engaging gameplay experiences, creating a stronger
connection between the player and the game, and possibly resulting in longer gameplay experiences.

We propose a progression model that uses player skill and content variety, in the endless level of
the mobile game Smash Time [9], a smasher game with more than 250.000 downloads on the iOS,
Android and Windows Phone platforms (Figure 1.2). This game already has a progression model to
generate content, but like most the single player games it just analyses the difficulty of the challenges.
More specifically, this game uses the classification of the challenges set by the game designer as easy,
medium or hard and has different probabilities to choose the next challenges’ difficulty according to the
time length of the gameplay session.

Figure 1.2: Smash Time mobile game.

With this dissertation we hope to create a skill-based progression model that is robust and dynamic
enough to be used in different types of games and that excludes the need of using preset difficulty
settings and/or adaptation rules.

4



1.3 Contributions

The work presented in this dissertation surveys the state of the art of research on player skill model-
ing and Procedural Content Generation. This work describes a progression model for endless single
player video games based on two different dimensions, the performance of the player relative to the
challenges that the game creates autonomously and the variety of the generated content. This model
was implemented in a commercial mobile video game, available on the Apple, Google Play and Windows
Phone stores. Finally, the implemented progression model was tested with users in order to validate the
proposal presented in this study.

This work reinforces the importance of integrating the skill dimension into the way Procedural Content
Generation is used in video games, through the autonomous generation of content based on the player
performance dealing with the challenges created and adapted by the game to a specific player at specific
moments on the play session. This work intents to demonstrate, that combining the skill dimension with
the variety of the generated content will provide more engaging gameplay experiences in single player
endless video games, increasing the duration of the gameplay experiences.

1.4 Organization

This dissertation is organized into 6 chapters and 10 appendices as follows:

Chapter 1, ”Introduction”, is this one and serves to introduce the reader to the problem that was
considered in this dissertation, our approach to deal with that problem and our contributions. It also has
the purpose to motivate the reader to know more about this dissertation and to serve as a guide through
this document.

Chapter 2, ”Related Work”, reviews the state of the art of the different research fields related to the
work presented in this dissertation.

Chapter 3, ”Testbed Game”, introduces the testbed game used to implement the progression model
developed on this research work.

Chapter 4, ”Progression Model”, describes the proposed skill-based progression model, its compo-
nents, concepts and implementation in the testbed game.

Chapter 5, ”Evaluation”, investigates the efficiency of the implemented progression model, describ-
ing the evaluation process done with real players and the results that were gathered from this evaluation.

Chapter 6, ”Conclusion”, summarizes the thesis main achievements and contributions and discusses
the proposed progression model current limitations. This chapter also describes future research steps
beyond the limits of this dissertation to improve the capabilities of the presented progression model.

Appendix A, ”Testbed Game: Smash Time”, contains extra information about the testbed game
used to implement the progression model.

Appendix B, ”Progression Model Pseudo Code”, contains the main pseudo code of the progression
model.

Appendix C, ”Playtest Procedure Guideline”, was the guideline used to conduct the playtest ses-
sions.

Appendix D, ”Playtest Game Data Collected Guideline”, was the guideline used to implement the
code that would track and register the game data of the playtest sessions.

Appendix E, ”Game Experience Questionnaire”, was the questionnaire used to know how players
felt while playing the testbed game with the proposed and implemented progression model.

Appendix F, ”Game Data Collected Questionnaire”, was the questionnaire used by us to gather the
registered data by the game during the evaluation sessions with the users.

5



Appendix G, ”Scoring Guideline Game Experience Questionnaire”, contains the 7 components, and
their items, used to evaluate qualitatively in a macro point of view the results of the playtests.

Appendix H, ”Quantitative Evaluation Results”, summarizes the quantitative results from the playtests
with users.

Appendix I, ”Qualitative Macro Evaluation Results”, summarizes the qualitative results, in a macro
point of view, from the playtests with users.

Appendix J, ”Qualitative Micro Evaluation Results”, summarizes the qualitative results, in a micro
point of view, from the playtests with users.
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Chapter 2

Related Work

This chapter starts with a brief description of what is Procedural Content Generation (PCG) and some
of its goals followed by a survey on previous work on PCG and its use in the gaming industry. We finish
the current chapter with an overall discussion about the related work bearing in mind the focus of this
work.

2.1 Procedural Content Generation

PCG is the process in which, computer software, algorithmically generates on the fly, game content
with limited or indirect user input [10] [11]. The algorithmically generated game content can be anything
from parts of a level or a map to complete levels and maps, game rules, 2D textures and 3D models,
characters and items, music, stories and side quests, etc. In this section we will make a quick survey
through some of the most iconic and important games which have paved the way PCG can be used in
games and some interesting games that were groundbreaking on the way they used PCG to generate
its content.

One of the first games to use PCG was Rogue [12], to generate the game dungeons where the
players could navigate. Also used to generate dungeons, there is the popular Diablo series with Diablo
I [13], Diablo II [14] and Diablo III [15]. In role-playing games like Diablo and others, PCG is also used
to generate the items the player can catch and the enemies that he/she will encounter. In Borderlands
[16] unique items and weapons are created and found in chests, on the ground, dropped by enemies,
sold at vendors in the game and got as rewards in quests, using PCG techniques. The algorithms used
in Borderlands change properties like the firepower, rate of fire and accuracy of weapons and were able
to generate over 3.000.000 different weapons [17]. PCG can be used to create game worlds that are
virtually infinite like the one in Minecraft [6], that is generated as players explore it. The world map is
generated using a map seed that is obtained from the system clock at the time the world was created.
The generation of such an amount of content is possible due to the splitting of the world into smaller
sections called chunks that are only created or loaded when a player is nearby.

Bethesda Softworks developed Radiant AI, a technology for Elder Scrolls IV: Oblivion [18] later ex-
panded and improved for Elder Scrolls V: Skyrim [19]. The Radiant AI technology is composed by the
Radiant AI system, that generates goals to the NPCs and deals with NPC interactions and behavior to
let them determine how to achieve those goals, and by the Radiant Story system, a quest system that
procedurally generates infinite quests to give the players new tasks based on their progress level in the
game. In dreeps: Alarm Playing Game [20], PCG is used to generate AI behavior to allow the game to
adapt to the player life rhythm. The first-person shooter video game .kkrieger [21] creates all the texture
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assets of the gameplay during the loading phase, resulting in longer loading times but allowing the entire
game to use a little amount of disk space compared to other games. SpeedTree [22] is a 3D Procedural
vegetation middleware software with the ability to generate 3D models of trees and plants to be used in
video games. Proteus [23] uses PCG to generate the music in the game, it analyses the player’s location
and movements and adapts the soundtrack to it, for instance, it may be silent when the player is at the
top of a hill and become more intense as he/she travels down the hill.

Spore [24] is an example of the potential that PCG can offer to video games due to the extensive
use of PCG algorithms in different areas. In Spore, the developers used PCG techniques to generate
planets, textures, animations and music. Spore uses user-generated content, with the Spore Creature
Creator in-game tool, to procedurally generate player-driven textures, materials and animations. When
creating a new creature, players first shape the torso of the creature, then they have the possibility to
add parts such as eyes, noses and mouths, arms and hands, legs and feet. The choices made can just
have a visual impact on the creature but may also affect the creature’s abilities like the speed, strength
and other stats. Once the creature is formed, PCG techniques are used to, depending on the topology of
the creature, procedurally apply textures, overlays, colors and patterns according to the painting choices
of the players, as well as to determine how the creature should walk, swim, dance, drag an object, eat,
etc., and procedurally generate animations for these behaviors based on the creature model that was
created by the player.

An example of how PCG can be used to create game content can be found in No Man’s Sky [25].
If we analyze closely how PCG was used in this game, we can say that there are no limits of what can
be done using PCG techniques. Stars, planets and their ecosystems (flora, fauna and their behavioral
patterns), artificial structures, alien factions, their spacecraft and encounters with the players are cre-
ated through procedural generation. This means that nearly all elements of the game are procedurally
generated, leading to there being over 18 quintillion planets to explore within the game. This content
is generated using deterministic algorithms and random number generators from a single seed num-
ber, hence very little data is stored on the game’s servers, as all the elements of the game are created
through deterministic calculations when the player is near them. This method assures that other players
will see the same elements by travelling to the same location in the galaxy. Temporary changes on the
planets, like mining resources, are not tracked once the player leaves that vicinity, but major changes,
like destroying a space station, are tracked for all players on the game’s servers. Additionally, in No
Man’s Sky, missions and the game’s audio are also procedurally generated.

There are a lot of PCG uses in commercial games in the video games industry as shown above.
PCG can also be used to analyze the player experience and skill to generate game content as we will
show in the sections 2.2 and 2.3 of this chapter.

2.2 User Experience

The player is the main element when we talk about the experience created by the game. In order to
develop good games with mechanisms that boost the experience we need to have a good understanding
about the player, like their: motivations such as needs, preferences, interests, expectations, values,
fears and dreams; limitations; capabilities; knowledge; and the context in which they play a game like,
with who, where and when they play a game. Gathering this information, we are able to create a
player profile that will be useful to create better game experiences [26]. As Chen [27] pointed out, each
player is different and experiences the same games in different ways, due to their personality, skills and
expectations when playing a game. This suggests that to satisfy different types of players, the game
should be able to adapt itself to the preferences of the player.
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Focusing in the player experience and in order to generate effective and meaningful content, Yan-
nakakis and Togelius [28] proposed a framework for PCG driven by computational models of user expe-
rience based on the personalization of user experience through affective and cognitive modeling com-
bined with real time adjustment of the content according to user needs and preferences. Also focusing in
the player experience, Dias and Martinho developed a personality-based framework to adapt videogame
content to the player [29]. Their framework infers the player type, based on the player’s Myers-Briggs
personality type (conqueror, manager, wanderer and participant), from his/her behavior and decides how
the content should be managed and presented to the player based on the inferred player type. In this
research a videogame was developed, called Grim Business, to show that being aware of the player type
can improve the player’s experience, based on difficulty management, presentation and control depth
over certain aspects of the game, resulting in higher player immersion and enjoyment. Shaker et. al
[30] used Super Mario Bros [31] to demonstrate how to collect players’ data to accurately model player
experience and tailor game content generation according to the player behavior. They collected data
from hundreds of players playing Infinite Mario Bros [32], related to content features, gameplay features
and reported player experience to tailor player experience in real time through automatic game content
generation, based on computational models of in-game player experience.

There are some videogames that also focus their content generation in the user-experience. Spore
[24], is an example about user-experience driven PCG as it extensively records and analyses players
actions to generate content that have a huge impact on the players’ gameplay experience of the game.
Spore is separated into 5 stages: the Cell Stage; the Creature Stage; the Tribal Stage; the Civilization
Stage; and the Space Stage. Each stage offers a different type of experience with different goals to
achieve. The players have the option to advance to the next stage once the main goal is achieved, or
to continue playing the current stage as long as they wish. The outcome of one stage affects the initial
conditions of the next stage. When a player progress to the next stage, the player’s actions are analyzed
and used to assign a characteristic to the player’s creature. Each stage has some characteristics, based
on how aggressively or peacefully the stage was played, that determine how the creature will start the
next stage and which abilities it will have, to be later used in the game.

2.3 User Skill

Focusing in the player, Cook [33] described the player model as ”The player is entity that is driven,
consciously or subconsciously, to learn new skills high in perceived value.”. In this context, a skill is
a behavior that a person uses to manipulate the world. Some skills are physical, such as making a
sculpture while others are on the conceptual domain, such as observing a map and planning the best
path to go from one point to another. Cook states that, when players learn something new and can
use that knowledge to successfully manipulate the environment for the better, they experience joy and
gain pleasure for that achievement. Furthermore, to create enjoyable gameplay experiences, the game
should demand full concentration from the player because when a person needs most of his/her skills
to deal with a challenging situation, his/her attention is completely absorbed by the activity in question
leaving no excess attention and focus to process anything else besides that activity [8].

There are several ways a game can provide different difficulty levels, adapting itself to different players
with different skill levels. Changing the difficulty of game can be achieved, for example, increasing
enemies’ attributes in a first person shooter game, such as shooting accuracy, damage, amount of life
and protection gear, resulting in a decrease of the player survivability. We can also tweak the opponents’
car stats in a racing game such as power, top speed, acceleration and shift time to increase the challenge
the players have to reach the top positions in a race. The simplest way to do this, is to ask the player,
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in the beginning of the game, which is his/her skill level, usually with the options: beginner, intermediate
and expert, corresponding to the difficulty levels: easy, medium and hard. This method can lead to not
so good gameplay experiences since players may not be completely aware of their skill level. Some
games try to understand the player skill level tracking and recording their actions in training levels. In the
beginning of Call of Duty: Modern Warfare 2 [34], players have access to a training camp to learn how
to play the game, followed by a course test called The Pit, where the player has to clear enemy locations
with minimal civil casualties in the shortest time possible. The Pit is used to test players’ skill level,
tracking their actions and analyzing players’ statistics such as: total time; civilians killed; and shooting
accuracy. After running The Pit, the game suggests a difficulty for the player based on their skill and
performance, but the player can choose to continue on any difficulty.

Another way to know the player skill level, and therefore adapt the difficulty of the game to his/her
skill level is two give the player several tasks and set the difficulty level according to the success rate
performing those tasks. Quake Live [35] use this technique, providing a training center when the game
starts, where the player has 3 portals to enter: Beginner; Intermediate; and Expert. At start, just the
beginner portal is available, and the player needs to use a technique familiar to players of previous Quake
games’ like the famous Quake III Arena [36], called rocket jump, where the player uses the explosion
from a rocket combined with a jump to reach high and/or far places, to reach the Intermediate portal.
After entering the Intermediate portal, an advance challenge, easily done by expert Quake players, is
given to the player, where he/she needs to perform a series of fast jumps in a limited amount of time
to reach the Expert portal. After entering the portal, the player needs to fight a non-player character
(NPC) controlled by the game AI. While he/she plays against the NPC, the opponent AI will, if needed,
reclassify the player skill and automatically adjust the difficulty setting in order to better face the player’s
skills. Quake Live uses this tutorial to assess the player skill level, so that it gets online games against
players with a similar skill level, through the game skill-based matchmaking system.

Different players have different skill levels. Even if two players start playing the same game at the
same skill level, they will develop their skill at different rates, which means that the same game can
become frustratingly difficulty for some players and boringly easy for others. One of the ways to deal
with this problem is to use Dynamic Difficulty Adjustment (DDA), where the game adapts itself during
play in response to players’ skill and performance evolution.

Since this dissertation proposes a progression model to an endless single player game mode, we
will now focus on some examples on how to progressively increase the game difficulty in endless single
player video games. This progression can be achieved by tracking the duration of the game session and
making some changes to the gameplay such as increasing the speed of the gameplay and changing
some features of the game content. Subway Surfers [37] is an endless runner for mobile platforms,
where the player controls a character that is running from a policeman in a railway track. The game
increases its speed as the player progresses through the railway track, giving progressively less time for
the player to react and avoid the obstacles that appear on the way and thus increasing the difficulty of
the game as time goes by. In Smash Time [9], another mobile game, there is the arena game mode,
an endless level where the player needs to tap and smash enemies that appear on the screen trying to
attack a hero, at the bottom of the screen, that teams up with the player. Besides progressively increasing
the speed of the enemies that come in waves, the game also changes the generated content type as
the game session advances, as it sends enemies that spawn other enemies after being killed, and thus
resulting in more taps needed to overcome an enemy wave. The negative side of both approaches is
that they only relate the difficulty of the procedurally generated content with the duration of the game
session, not bearing in mind player’s skill dealing with the given obstacles (content). As in both cases
the game uses DDA techniques that are based on the game designer intuition instead of reflecting the
actual player skill level, both progression techniques end up generating similar gameplay experiences for
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different players and even for the same player as the player skill increases trough several game sessions.

Polymorph [38] is a 2d platformer game, that combines machine learning with level generation tech-
niques to understand the level difficulty and the player skill and dynamically construct levels with continu-
ally suited challenge. As Jennings-Teats et al. claim, “the difficulty in 2d platformer levels is related to the
combinations of adjacent level components more than to the presence of a particular level component”.
Hence, Polymorph’s machine learning model of difficulty uses level segments combined with a dynamic
model of the player’s current performance to generate the level in front of the player. It attempts to give
the players the appropriate level of challenge while trying to avoid making them bored or frustrated, if
the game is too easy or too hard, respectively.

Pereira [39] developed a progression modeling tool to understand the player skill evolution in or-
der to provide appropriate challenges in a 2d platformer game. This tool uses a library of challenges
combined with a skill-based player model that is based on the player mastery level (e.g. uninitiated,
partially mastered, mastered) for specific challenges (e.g. wall, hole) and game mechanics (e.g. jump,
slide, double jump) to know when to unlock new and more difficult challenges and mechanics. In this
progression model, a challenge become mastered after several challenges of that type are successfully
overcome and a mechanic becomes mastered when its used several times to overcome a challenge.
The progression is guided by preset adaptation rules created by the game designer, that specify how
the progression of the game should evolve according to the player’s skill evolution. The game designer
creates a progression graph that specify the dependencies and constraints between all the challenges
the game can generate and the mechanics that can be used by the player. The game starts with few or
just one mechanic and challenge unlocked to the player and, as the player skill evolves the game starts
unlocking new and more difficult challenges and mechanics, according to the progression graph defined
by the game designer. An example of a progression graph can be seen on Figure 2.1.

Figure 2.1: Example of a progression graph enabling several mechanics and challenges.

Zook et al. [40] proposed a model for skill-based mission generation that tries to solve 2 problems:
challenge tailoring, or in other words ”the problem of matching the difficulty of skill-based challenges over
the course of a game to match player abilities”; and challenge contextualization, related to the fact that
the game should provide appropriate motivating story context for the skill-based challenges and thus re-
sulting in the creation of story content that motivates game play in between challenges. To deal with the
challenge tailoring problem, the model must find a sequence of challenges that produce a given progres-
sion of predicted player performance. To achieve this, the game designer specifies a performance curve
that determines the wanted progression of the player’s performance over the course of a mission. As
a result of this study, they propose a five criteria data-driven player model: predictive power; accuracy;
efficiency; generative sufficiency and temporality to guide skill-based mission generation combined with
story events.
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2.4 Discussion Overview

Inspired on the work of Chen et al. [27] and Martinho et al. [26] about the importance of the player in the
development of videogames, we will try to value each player individually, with his/her own capabilities
and limitations, in order to provide a different and personal gameplay experience to each one of them
trying to satisfy different types of players with the same game. Furthermore, we will create a player
model, that will be updated over the course of time and play sessions, trying to give each player a
different and appropriate experience every time he/she plays the game according to the evolution of
his/her skills.

We believe the DDA techniques used in Call of Duty: Modern Warfare 2 [34] and Quake Live [35]
are a good approach to adapt the levels to different players with different skills, although we want to
avoid, in one hand, asking the players to guess and define their skill level so that the game can adapt
its difficulty to their skill level and, in the other hand, to force the players to play a training level to allow
the game to understand their skill and abilities. In order to avoid these situations, we want to focus in
DDA techniques where the game adapts itself during play in response to players’ skill and performance
rather than in the game designer’s intuition of what challenges are appropriate to a specific skill level or
the player’s intuition on which skill level he/she has.

Using the concept of Polymorph [38] of continuous level difficulty we will create a player model that
records the player skill in response to the last N-challenges presented. In this point of view the difficulty
of a challenge and its obstacles is not separate from the previous challenges and their obstacles. This
approach allows the progression of the game to match the progression of the player’s skills dynamically
in order to avoid making the player bored if the game is too easy or frustrated if too hard.

We will base our progression model in the skill-based mission generation model of Zook et al. [40]
with two components, challenge tailoring and challenge contextualization. The first component will work
in the same way, since the model must find a sequence of challenges that produce a given progression
of predicted performance. This will be done also using a game designer specified performance curve
that determines the progression of a player’s performance over the course of a game session. The
second component will be slightly adapted since the context of the challenges will be done according by
the type of obstacles that compose the challenges, their patterns and paces to provide a good variety of
the challenges given to the players.

Like in the work developed by Pereira [39], we will try to understand how the player skill evolves, also
using the concept of game content being presented in the way of challenges, to provide a challenging
and engaging game progression to the players. In contrast with that progression model, that uses a
progression graph of dependencies and constraints between challenges, preset by the game designer to
unlock new content, all of the content in our progression model is unlocked at the start of the game. The
approach in the presented progression model, is that is going to be the player’s skill evolution to show
the game that the player is ready for more challenging content, according to the defined performance
curve defined by the game designer. With this approach we want to avoid, as the game dimension
and complexity increases, the task of the game designer to create new challenges not to become too
difficult and time-consuming, due to the fact that the challenges do not need to be interrelated, as it
happens with a progression graph and all its dependencies and constraints between the challenges.
Another reason for the exclusion of the progression graph is that, without it, we also remove the game
designer’s intuition factor, about what would be the difficulty level of each challenge and the decision
of all the possible connections and dependencies between the challenges. Instead, the game designer
has a simpler task, that is to define a performance curve that will allow the game itself to choose which
content to provide to the player. The proposed progression model also uses a library of challenges in
which each challenge can be created in a modular way without dealing with its relation with all the other
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challenges already existing in the challenges’ library. This leads to a less time-consuming and easier
challenges’ creation task for the game designer. Finally, with the exclusion of the progression graph, the
game is able to provide different gameplay experiences each time a player plays the game, instead of
providing always the same progression evolution for all the players in all game sessions.

Another two examples of games that also provide always the same progression, which leads to a rigid
gameplay evolution and with that, similar gameplay experiences for all the players in all game sessions,
are the progression models used in Subway Surfers [37] and Smash Time [9]. To avoid this, we will, like
explained before, remove the game designer’s intuition factor about the challenges’ difficulty and also
about how should the speed of the game increase progressively, to focus on the real player skill, and its
evolution, as he/she plays the game.

Bearing what was addressed in this chapter and discussed in this section, we created a progression
model that can successfully create challenging, engaging and varied gameplay experiences.
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Chapter 3

Testbed Game

This chapter presents Smash Time, the video game used as testbed game to implement and test the
progression model described in this work. Smash Time 1 2 is a smasher game developed by me and my
colleagues at Bica Studios, with Unity [41], for smartphones and tablets.

3.1 Smash Time

Smash Time has fast gameplay mechanics, that result from the combination of elements from classic
games like Whac-a-Mole and Space Invaders, mixed with puzzle mechanics. There are two game
modes available in the game, the Campaign and the Arena.

In Smash Time, the world is being devoured by alien blobs that came from the outer space and rapidly
started eating everything in their way making them grow bigger and evolving to stronger creatures. They
must be stopped in order to save the Universe, and to help the player in this task there is Bica, a cosmic
guardian with the power to unite worlds through the player’s smartphone or tablet (Figure 3.1).

(a) Heroes. (b) Smash mechanic. (c) Campaign levels. (d) Leaderboards.

Figure 3.1: Smash Time promo screens.

In this chapter we are going to explain in detail the game components, the Arena game mode 3 and
its gameplay, focusing on the information related to the scope of this work.

1iOS version available on the App Store: https://itunes.apple.com/pt/app/smash-time/id948782612?mt=8
2Android version available on Google Play: https://play.google.com/store/apps/details?id=com.bicastudios.

smashtime
3Information about the Campaign game mode, the other game mode of Smash Time, can be found in Appendix A
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3.2 Game components

Smash Time characters are enemies, animals and heroes 4, that coexist in the same world. With the
help of a team of heroes, the player must save the animals by defeating the enemies. This section
contains a description of the characters and game components that are relevant in the scope of the
developed progression model.

3.2.1 Enemies

The enemies have different colors, sizes, movement and attack mechanics. Enemies enter the screen
from the top and both sides and try to attack, both the hero that is, at the bottom of the screen, helping
the player and the animals that are trying to escape from them to survive. The player goal is to smash
the enemies and clear all the incoming waves (groups of enemies). To smash one enemy and receive
one or more points for it, the player must tap on it with a finger, one tap for normal enemies and multiple
taps for the bosses. An example of an enemy being tapped and smashed by the player is presented in
Figure 3.2.

Figure 3.2: Smash Time tap mechanic to smash one enemy.

There are 4 normal enemies on Smash Time and some of them spawn a new enemy when killed by
the player, as the Table 3.1 shows.

3.2.2 Animals

As said before, one of the main goals of the player is to save as much animals as possible from the
hungry enemies. The animals are running around like crazy, they enter and exit the screen from the top
and both sides and some of them also run away in the direction of the hero, exiting the screen from its
bottom. Some of the enemies eat animals if they have the chance to get close enough to them, evolving
into a new type of enemy as shown in Figure 3.3.

The evolution states of the enemies follow the opposite way of the enemies’ de-evolution order shown
previously (Table 3.2).

4Additional information about the heroes of Smash Time can be found in Appendix A
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Table 3.1: Smash Time Enemies’ De-evolution Phases.

Figure 3.3: Smash Time enemy eating an animal and evolving.

Hence, the player’s task is to defeat the enemies to stop them before they get too close to the animals.
The player must be careful to not tap on an animal because, the animals can also be smashed if the
player taps on them, resulting in a game over situation (Figure 3.4).
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Table 3.2: Smash Time Enemies’ Evolution Phases.

Figure 3.4: Smash Time game over by player smashing an animal.

3.2.3 Score System

The score multiplier value goes up and down according to the player actions and has the minimum value
of 1 and does not have a maximum value. Each smashed enemy gives 1 point multiplied by the score
multiplier value. As seen in Figure 3.2 the game rewarded the player, for smashing one enemy, with 2
points because the score multiplier had the value of 2. However, when the player misses one tap on an
enemy and touches the floor of the scenario, the value of the score multiplier decreases one unit. The
score multiplier can be increased by completing enemy sequences.
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3.2.4 Enemy Sequence

The puzzle component of the game is presented by a secondary goal that the player can also focus
on. A sequence of enemies is shown to the player representing the order that the enemies should be
smashed to increase the score multiplier value.

Players can smash any enemy, at any moment at their will, always being rewarded with points for
each successfully killed enemy. The advantage of paying attention to the enemy sequence and trying
to follow it, is that at each enemy smashed corresponding to the next enemy on the sequence, the
players gets closer to complete the enemy sequence. As mentioned above, when the player completes
one enemy sequence, the score multiplier value is incremented by one unit. Finally, with higher score
multiplier values, the player increases the chances of achieving higher score results and better rewards.

3.3 Arena Mode

There are online events, where players compete, to reach the highest positions in the leaderboards and
with that achieve better rewards, called Arenas. An Arena run starts with 60 seconds (Figure 3.5a), and
ends when the timer gets to zero seconds (Figure 3.5c) or when the hero gets attacked by the enemies
as shown on Appendix A.

In this game mode, players try to play as much time as possible, to reach the highest score possible,
on an infinite level with a timer that can be extended to the maximum of 99 seconds. According to
the player’s performance against killing the enemies of the enemies’ sequences, that are generated
by the game, they are rewarded with the possibility to extend the timer, by tapping and smashing a
Golden Bouncini, one special type of enemy that appears more often the larger the number of enemies’
sequences completed by the player. Figure 3.5b shows a player killing a Golden Bouncini to get a time
extension reward of 10 seconds.

This game mode does not include animals running from the enemies, to increase the tap frenzy
effect and remove the special attention that the players need to pay to the different types of obstacles
(enemies and animals) and if they can tap on them or not.

(a) Start State (Time = 60s). (b) Time Extension (Time = Time + 10s). (c) Final State (Time = 0s).

Figure 3.5: Smash Time Arena Timer States.

Figure 3.6 shows the heads-up display (HUD) of the arena game mode with: an enemy sequence
combo given to the player; the score multiplier, the score the player reached so far, the arena timer and
the next player on the leaderboard according to the score achieved up to that point. The numbers in the
figure have the following meanings:
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1. Arena timer showing the time left on the current game session;

2. Sequence of enemies to smash;

3. The score multiplier. Each enemy sequence has a time limit to be completed, this is shown by the
timer bar behind the multiplier number that slowly empties until being completely empty, generating
a new enemy sequence at that point. If the player is able to successfully smash all the enemies of
the sequence inside the time limit, the score multiplier increases one unit;

4. Score achieved so far;

5. Avatar and score of the next player on the leaderboard.

Figure 3.6: Smash Time Arena HUD.

As a result of this work, a new progression model was created and replaced the original progression
model of the arena game mode. The old progression model that has originally been used in the arena
game mode of the testbed game is described below.

An arena game session was regulated according to the duration of the arena run itself. There were
3 difficulty settings: easy; medium; and hard. For each difficulty there were enemies’ waves preset.
Each 30 seconds the difficulty phase of the arena was updated to the next one, which means that after
30 seconds the game changed to the medium difficulty phase and after another 30 seconds the game
changed to the hard difficulty phase, where it would stay until the end of the game session.

For each difficulty phase, the game designer had to set the probability of the difficulty of the enemy
waves (groups of enemies) that were randomly selected. Besides the type of enemy waves that were
selected, according to each difficulty phase probabilities, the speed of the enemy waves was constantly
increasing in relation to the elapsed time since the beginning of the arena run. This means that one
enemy wave could be used several times in the same difficulty phase (easy, medium or hard) with
different speeds, according to the elapsed time so far in the arena run.
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Chapter 4

Progression Model

In this dissertation thesis, we propose a skill-based progression model for endless single player videogames
and the present chapter will serve to explain our proposal in detail. The progression model developed in
this dissertation thesis was implemented, using Unity engine, on top of the Arena game mode of Smash
Time [9], the testbed game discussed in the previous chapter.

The main goal of our progression model is to provide immersive and engaging gameplay experiences
that will make players want to play more often and for longer periods. To achieve this, we kept in mind
these principles:

1. the game should allow and support player skill development;

2. the game should be constantly challenging, with care to avoid not becoming too difficult, and
therefore stressful for the players, nor too easy, and consequently boring for the players;

3. the game should match the player’s skill level at all times throughout a game session, increasing
the level of challenge as the player moves forward through the game and increases their skill level;

4. the game should provide different levels of challenge for different players;

5. the game should vary its content and provide new challenges at an appropriate pace.

Following these principles, we propose a skill-based progression model that is composed by the
following components:

• Concepts:

– Challenges;

– Obstacles;

– Tags.

• Models:

– Player Performance Model;

– Content Variety Model;

– Content Generation Model.

In this chapter, we will analyze the progression model concepts and components. More specifically,
how the Challenges, Obstacles and Tags are used by the three main components that compose the
core of the developed progression model: the Player Performance Model ; the Content Variety Model ;
and the Content Generation Model.
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4.1 Challenges

Challenges are formations created by the game designer with one or more paths (or wave paths) that
guide the movement of the obstacles. The game designer creates a library of challenges that are stored
as Unity prefabs (game objects with components and properties that can be used as templates to create
new object instances in real time) (Figure 4.1), to be used by the progression model later in real time.

A challenge is composed by a set of waves that are going to spawn a set of obstacles that will
move with a certain speed (challenge pace) in a specific wave path. A wave path is defined by a set of
waypoints (intermediate points that are connected to form the path that will be followed by the obstacles
of the wave) that are specified by the game designer. The quantity and type of each wave’s obstacles, as
well as the challenge pace are defined by the progression model in real time. An example of a challenge
composed by 3 different waves (each with the wave path composed by 3 waypoints) can be seen in
Figure 4.2.

The progression model has the task to generate new challenges as the game progresses, while the
player has the task to overcome those challenges.

Figure 4.1: Arena Challenge Library.

4.2 Obstacles

An obstacle can be something that requires the player to use his/her skills to be overcome. In the context
of the testbed game, the obstacles of the Arena game mode can be: a Red Enemy; a Green Enemy;
a Blue Enemy; and a Purple Enemy. To overcome each obstacle, the player must tap on it. When the
player taps on an enemy, it smashes and kills that enemy. Some enemies generate another enemy after
being killed by the player. The Figure 4.3 illustrates the arena obstacles’ backward evolution phases
when the player smashes one enemy with a tap.

Even though each obstacle is a different enemy and all of them have one life, meaning this that
they die with a single tap from the player, as some enemies generate other enemies, we consider that
an obstacle is completely overcome just when the Purple and last enemy in the de-evolution order is
smashed and killed. On the basis of this premise, we can distinguish an enemy that was spawned inside
one challenge wave and an enemy that was spawned from another enemy that was already alive.

Therefore, let’s look into the following example: A challenge has one wave that spawns a red enemy
obstacle, the player taps on the red enemy obstacle and it spawns a green enemy obstacle, then the
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Figure 4.2: Challenge prefab with 3 obstacle waves.

Figure 4.3: Arena obstacles’ backward evolution phases

player taps on the green enemy obstacle and it spawns a blue enemy obstacle, when the player taps
this blue enemy obstacle a new purple enemy obstacle is spawned, and finally when the player taps on
the purple enemy obstacle no more enemies are spawned. Hence, when that happens, we consider
that the original red enemy obstacle was completely overcome with the smashing of the red, green, blue
and purple enemy obstacles. With all obstacles overcome, the progression model considers that the
challenge was also overcome.

The quantity and types of the enemy obstacles that are spawned by one challenge are defined in
real time, by the progression model.

4.3 Tags

The proposed progression model uses a set of tags to give context to the game content, more precisely
to give context to the challenges and obstacles of the game. The context of a challenge and its obstacles
describes and classifies the challenge, using a set of tags that are assigned, both by the game designer
and by the progression model. The tags used by the progression model to describe each challenge,
have the purpose to provide a way to assign, each given challenge to the player, a performance value
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and a variety value, and are organized into four separated groups as shown in Figure 4.4.

TAGS

OBSTACLE PACE TAPS GAME DESIGNER

Purple Slow 1-3 TargetHero

Blue Moderate 4-6 Escape

Green Fast 7-9 Gate

Red 10-12 Elbow

13-15 DownLine

... ...

Figure 4.4: Tag categories.

These tags are defined and assigned in two different phases:

The first phase takes place during the creation of the challenge’s library, when the game designer
creates the challenges and manually assigns a set of tags, the Challenge Game Designer Tags, through
the Challenge Editor Window on Unity (Figure 4.5), to each challenge after creating it. These tags can
be used to describe: the context situation created by the obstacles (e.g. AttackHero - when the wave
paths make the enemies go down the screen to attack the hero, Escape - when the enemies escape
by both sides of the screen); the formation of the obstacles (e.g. BlockAttack - when the waves form a
block and spawn enemies in a group, ZigZagAttack - when the wave paths of a challenge are zig zag
lines); or anything the game designer wants to describe in the challenge.

Figure 4.5: Challenge Editor Window: Challenge with 2 Game Designer Tags assigned.
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The second phase takes place in real time, when the progression model autonomously creates a new
challenge, with random content (quantity and type of obstacles and their pace), and assigns a new set
of automatic tags that describe: the number of taps needed to overcome the challenge, the Challenge
Taps Tags, 1 (e.g. Taps1-3, Taps4-6, ...); the type and name of the obstacles that the challenge and its
waves are going to spawn, the Obstacle Tags, (e.g. RedObstacle, GreenObstacle, BlueObstacle and
PurpleObstacle); and the challenge pace, the Challenge Pace Tags, that represent the speed of all the
challenge obstacles that move at the same pace (e.g. SlowPace, ModeratePace, FastPace).

The proximity between two challenges, from the challenges’ context point of view, is calculated by
the amount of common tags between the two challenges, relative to the total amount of tags of both
challenges.

4.4 Game Cycle

This section presents the game cycle with the progression model integrated. To better understand
the game cycle, the progression model architecture diagram is visible in the Figure 4.6. This diagram
represents the game cycle of the game with the progression model which is composed by the following
steps, that are repeated in a loop:

1. Generate a new challenge (game content) to present to the player, using:

• the Player Performance Predictive System from the Player Performance Model;

• the Content Variety Data from the Content Variety Model;

• the Challenge Library.

2. Register the player response dealing with the obstacles that compose the generated challenge;

3. Analyze the player performance through the recorded player actions relative to the generated
challenge;

4. Register the player performance data in the Player Performance Model;

5. Register the challenge variety data in the Content Variety Model;

6. Go to step 1.

4.5 Content Generation Model

The Content Generation Model uses both the Player Performance Model and the Content Variety Model
to be able to generate engaging and challenging game content throughout a game session. Figure 4.7
shows the game content generation process, focusing in the connection between the Challenge Library
and the Content Generation Model, and type of content that is used and generated by the Content
Generation Model.

The Content Generation Model is used to generate a new challenge in the beginning of a new run
and, from that moment, every time there is only 1 obstacle left from the last generated challenge. This
model is composed by the following phases:

1The first version of the Challenge Taps Tags was created with one tag for each number of taps (e.g. Taps1 = 1 tap; Taps2 = 2
taps; Taps3 = 3 taps; ...) but, as explained in the section 5.1, it was later changed to groups of 3 taps for each tag (e.g. Taps1-3 =
[1,3] taps; Taps4-6 = [4,6] taps, Taps7-9 = [7,9] taps; ...).
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Figure 4.6: Game cycle with the Progression Model Architecture.

1. Generate a new population of 50 random challenges: This population of new challenges is, in
fact, a population of metadata challenges that will contain only the data needed to generate a new
challenge. This data includes the list of the various tags that will be assigned to the challenge,
as well as the predicted player performance value and the predicted content variety value that are
both used to calculate the overall challenge utility value. Instead of generating a population of
Challenge prefabs, that would take a big amount of time and memory to be instantiated, especially
given the fact that the testbed game runs on mobile devices, this model generates a population
of metadata challenges. The class Challenge Data was created for this purpose, as it serves
as a container to store the data of a possible challenge, allowing the creation of lots of possible
challenges and thus, optimizing the efficiency and performance of the progression model. After
the generation of the metadata challenges’ population, each Challenge Data is connected to a,
randomly selected, challenge prefab in the challenges’ library 2.

2. Populate the new population of metadata challenges: each Challenge Data is populated with ran-
dom content for each challenge’s wave: the wave obstacles’ quantity; the wave obstacles’ types;

2For more information, see the algorithm 2 in the Appendix B
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and the wave obstacles’ order. After setting the obstacles that will be spawned, the corresponding
Obstacle Tags are assigned to each Challenge Data. The next step is to count the number of
taps needed to overcome all the obstacles that will be spawned and the obstacles that will appear
from the originally spawned obstacles of the Challenge and assign the correspondent Challenge
Taps Tag to the Challenge Data. A random pace is set for the challenge and the corresponding
Challenge Pace Tag is assigned to the Challenge Data 3. The challenge pace is then assigned
to each wave of the challenge, to be later set to each obstacle when it is spawned. Finally, the
Challenge Game Designer Tags are copied from the original challenge from the challenges’ library
to the Challenge Data, as well as to each wave of the challenge to be later set on each obstacle
when spawned. 4.

3. Select the next best challenge candidate to be generated: Run through all the populated metadata
challenges and calculate their utility values using a heuristic evaluation function that combines the
predicted content variety value of a challenge with its predicted player performance value. In the
end of this phase, the Content Generation Model defines which one is the most useful challenge to
be generated next and presented to the player. To get the best challenge candidate, the heuristic
evaluation compares: the next desired player performance value, from the performance curve
defined by the game designer, with the predicted player performance value of each metadata
challenge; and the next desired content variety value, from the variety curve also defined by the
game designer, with the predicted content variety value of each metadata challenge 5;

4. Generate and activate a new challenge: after choosing the next best challenge candidate, from
the metadata challenges’ population, the Content Generation Model copies all the data from the
chosen Challenge Data to the corresponding challenge prefab from the library and activates the
new challenge.

5. Clean all the data from the last generated and populated metadata challenges’ population and
reuse again this population of metadata challenges on the step 1.

4.6 Player Performance Model

The following Player Performance Model was designed to evaluate the player’s skill level, in order to allow
and support the game to generate content that matches the player’s skill level and to keep constantly
challenging the player, as the player progress through the game. Since this Player Performance Model
is adapted with data collected every time the player plays the game, it also allows the game to adapt
itself and provide different levels of challenge for different players.

To achieve this, the game designer specifies a performance curve, that will shape the progression
of the player’s performance as it determines the difficulty flow of a game session. Figure 4.8 shows
the used performance curve in this progression model as an example of a possible performance curve
defined by the game designer.

4.6.1 Player Performance Analyzer

The performance of a challenge represents the player’s dexterity to overcome the obstacles that com-
pose the challenge. The value of the player performance relative to a generated and presented chal-
lenge is calculated using the combination of all its tags (Challenge Game Designer Tags, Challenge

3The obstacles’ speed varies from 3 to 4,5: [3;3,5] = Slow Pace; ]3,5;4] = Moderate Pace; ]4;4,5] = Fast Pace
4For more information, see the algorithm 3 in the Appendix B
5For more information, see the algorithms 4, 8, 9 and 10 in the Appendix B
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Pace Tags, Challenge Taps Tags, Obstacle Tags) performance values considering their categories’ per-
formance weights 6.

The Player Performance Model stores performance data relative to each tag of the progression model
and relative to every challenge generated and presented to the player. The tags have a performance
history of the last 10 performance values and the challenges’ performances are recorded since the
beginning of each game run as shown in Figure 4.9. When the game is installed by a new user, each
tag starts with a bootstrap performance value, that was obtained during play testing sessions with both
new users to the game and experienced users. With each arena run session this bootstrap performance
values will be replaced by real player performance values obtained through the gameplay data.

While the Obstacle Tags’ performances are analyzed individually to get more granular and accurate
data, the Challenge Tags’ (Pace, Taps, Game Designer) performances are calculated in a macro point
of view, with all the challenge obstacles contributing to those tags’ performance, using a performance
metric called Challenge Taps Score, that is calculated from the counting of all the taps needed to over-
come all the obstacles that will be spawned in a challenge and the taps successfully done on obstacles,
calculated according to the following formula:

ChallengeTapsScore =
TapsDone

TapsNeeded
(4.1)

The performance of an obstacle reflects if the player was able to overpass it (enemy smashed) or
not (enemy escaped or attacked the hero). After one obstacle is overcome or not by the player, a perfor-
mance value is assigned to that obstacle, and recorded in the performance history of the correspondent
Obstacle Tag assigned to the challenge to which the obstacle belongs to, with one of the following values:

Performance(ObstacleOvercome) = 1 (4.2)

Performance(ObstacleNotOvercome) = 0 (4.3)

As explained in the Section 4.2, an obstacle is considered to be overcome when all the obstacles
that are spawned from it, if there are any, are overcome.

The Figure 4.10 shows an example of a challenge with the obstacles overcome by the player marked
with a green check mark and the obstacles not overcome marked with a red cross. The figure also
shows the tags assigned to the challenge and the Challenge Tap Score value calculated from the player
performance.

Every time a challenge is deactivated, its tags’ performances are calculated and registered on the
Player Performance Model, and used to assign an overall performance value to the challenge. The
Challenge Taps Score value is calculated and assigned to the Pace Tag, Taps Tag and Game Designer
Tags performance values to be afterwards registered in each tag performance history in the player perfor-
mance data (Figure 4.9. The final performance value of each Obstacle Tag of the challenge is calculated
with the average of all the recorded obstacle performances with the same tag. For this challenge and
the corresponding player performance, shown in the figure, the Player Performance Analyzer would do
the following calculations:

•Game Designer Tags Performance :

6For more information, see the algorithm 2 in the Appendix B
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Performance(TargetHero) = 0, 64 (4.4)

Performance(DownLines) = 0, 64 (4.5)

Performance(GameDesignerTags) =
TargetHero+DownLines

2
= 0, 64 (4.6)

• Pace Tag Performance :

Performance(SlowPace) = 0, 64 (4.7)

• Taps Tag Performance :

Performance(Taps10− 12) = 0, 64 (4.8)

•Obstacle Tags Performance :

Performance(RedObstacle1) = 1 (4.9)

Performance(RedObstacle2) = 0 (4.10)

Performance(BlueObstacle) = 0 (4.11)

Performance(PurpleObstacle) = 1 (4.12)

Performance(ObstacleTags) =
RedObstacle+RedObstacle+BlueObstacles+ PurpleObstacle

4
= 0, 5

(4.13)

Finally, the performance assigned to the challenge is calculated using the following formula:

Performance(Challenge) = Performance(GameDesignerTags) ∗GameDesignerWeight (4.14)

+ Performance(PaceTag) ∗ PaceWeight (4.15)

+ Performance(TapsTags) ∗ TapsWeight (4.16)

+ Performance(ObstaclesTags) ∗ObstacleWeight (4.17)
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4.6.2 Player Performance Predictive System

When the Player Performance Model needs to estimate what would be the player performance against a
new challenge, it looks at the estimated performance of all the tags that are assigned to that challenge,
according to each tag category weight, like when the player performance is analyzed and calculated as
explained above 7. The estimated performance of each tag is calculated by the average value of the last
10 player performance values recorded.

4.7 Content Variety Model

The variety of a challenge represents its novelty and is defined by the variety of its tags. Challenges
have variety values between 0 and 1. The variety of one specific tag is calculated by the frequency of its
appearance in the game compared to the total count of already used tags. This means the more often
a tag was used, the closer to 0 its variety value is and on the opposite side the less a tag was used,
the closer its variety value is to 1. Hence, when a player starts a new game run, all the tags start with a
variety value of 1, because they were never presented to the player. Figure 4.11 shows the data stored
relative to the game content variety.

In the same way the game designer has the task to define a performance curve, he/she also has
the task to define a variety curve, that will shape and guide the progression of the gameplay in terms
of variation of the game content that is generated by the Content Generation Model. Figure 4.12 shows
the used variety curve in this progression model as an example of a possible variety curve defined by
the game designer.

The variety of a tag is calculated using the counting of the used tags in the already generated chal-
lenges, through the data stored in the Content Variety Model as shown if the following formula:

V ariety(Tag) =
TagUsageCount

TotalTagsUsageCount
(4.18)

Using each tag’s individual variety value, the Content Variety Model is able to assign a variety value
to a challenge using the following formula:

V ariety(Challenge) = V ariety(GameDesignerTags) ∗GameDesignerWeight (4.19)

+ V ariety(PaceTag) ∗ PaceWeight (4.20)

+ V ariety(TapsTags) ∗ TapsWeight (4.21)

+ V ariety(ObstaclesTags) ∗ObstacleWeight (4.22)

In this progression all the tags’ categories have the same variety weight but there is the possibility, for
example, in order to strengthen the game designer role relevance in the variation of the game content,
to increase the weight of the Game Designer Tags’ variety.

7For more information, see the algorithm 2 in the Appendix B
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Figure 4.7: Game Content Generation (Challenge Library + Content Generation Model).
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Figure 4.8: Player Performance Curve.
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Figure 4.9: Player Performance Model Data.
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Figure 4.10: Example of the player performance dealing with a challenge generated by the Content
Generation Model.
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Figure 4.11: Content Variety Model Data.
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Figure 4.12: Content Variety Curve.
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Chapter 5

Evaluation

In this chapter, we report the testing made on the progression model presented in the previous chapter,
presenting the procedures, results, changes and insights for each moment of the evaluation. In order
to validate if the generated player-adapted content improves the player experience we evaluated the
quality and potential of the implemented progression model with playtesters, in several phases during
the development of the proposed solution. The first part of the evaluation with real users, novice and
expert players of the testbed game, was made to adjust the parameters of the progression model and
to verify its potential. Next, we will describe in detail the qualitative and quantitative evaluations made
to validate our approach. To conclude this chapter, we will present the insights gained from the different
evaluations that were made.

5.1 Preliminary Evaluations

Preliminary evaluations were made several times through the development of this progression model.
These evaluations were made with real users, both novice and expert players of the testbed game.
These evaluations had the following objectives:

• Test the performance of the progression model;

• Test the reaction time of the progression model to the evolution of the player skill level;

• Test players’ reactions obtained from the gameplay experience with the progression model;

• Get the bootstrap values of the player performance to be used in the final version of the Player
Performance Model;

• Refine the performance curve that defines the wanted player skill evolution curve;

• Refine the variety curve that represent the wanted content variety progression;

• Fine tune every parameter of the progression model components.

5.1.1 Procedure

These evaluations were made without any formal playtest guideline, it was based on informal playtesting
the new arena followed by an unstructured interview to the participants to collect all type of feedback
without telling the participants what they were testing in order to not bias the gameplay experience and
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the participants feedback. In the end of each playtest session the values recorded by the Player Perfor-
mance Model, accessible through the SRDebugger tool on the mobile, were collected and gathered on
the progression model being developed.

5.1.2 Results and Changes

One of the goals of these preliminary evaluations was to get the bootstrap values of player performance
of the several tags that are stored in the Player Performance Model. This process was done through
several iterations, each of them with changes on the values collected from the users’ playtests, in order
to tune those bootstrap values to the point that they represent a good starting point to new users. After
having tuned the bootstrap player performance values that compose the Player Performance Model of
the progression model, we were ready to do qualitative and quantitative evaluations of the implemented
solution.

As these experiments were repeated several times through the development of the progression
model, the number of recorded player performance entries for each tag changed several times. In
the first version used on these preliminary evaluations, the Player Performance Model had saved data
related to all challenges and obstacles presented to the player since the game was installed. This first
experiments revealed that this approach was not appropriate because on the one hand, the player data
become too large and the game started to slowdown a little bit after some game sessions and on the
other hand, as all the times a new challenge is generated by the Content Generation Model, the Player
Performance Model takes into account everything the player did since the beginning, which means that
we were not giving more relevance to the most recent actions of the player. To solve both of these prob-
lems the recorded player actions window was updated to keep track of the last 20 obstacles presented to
the player. As a result of later experiments and in order to decrease the reaction time of the progression
model to the player skill evolution, this value was later changed to the last 10 player performance records
for each tag. With a smaller performance history window, with the most recent player performance data,
the progression model is able to adapt more easily to the player skill progression not being tied up to
what happened a long time ago and that is no longer relevant to the current player skill level.

One of the changes that were made after these experiments, was to change the Challenge Taps
Tags to have each tag representing a group of number of taps (e.g. Taps1-3 = [1,3] taps; Taps4-6 =
[4,6] taps, Taps7-9 = [7,9] taps; ...) instead of each tag matching a specific number of tags (e.g. Taps1
= 1 tap; Taps2 = 2 taps; Taps3 = 3 taps; ...). With this change we hope that in most arena runs, the
player performance data is updated, with recent data, for the largest possible number of the existing
Challenge Taps Tags in the Player Performance Model. If the tags only represented one value of taps,
there was the possibility that several arena runs would pass, until one or more tags’ performance data
history would be updated, due to no challenges being generated with some values of taps needed, what
would lead the progression model to keep old player performance data that, once again, could no longer
be relevant to the current player skill level.

After having the bootstrap values of the progression model and all parameters adjusted, we were
ready to qualitatively and quantitatively test the implemented solution.

5.2 Final Evaluation

The qualitative and quantitative evaluations made to validate the developed progression model are de-
scribed bellow. The playtest procedure guideline used by the observer of the playtest sessions can be
consulted in the Appendix C.
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5.2.1 Procedure

For this study, we looked to find people from all types:

• gamers and non-gamers;

• with and without experience in games of the same genre;

• with and without previous experience in the used testbed game;

• females and males;

• young and old.

The objective of this evaluation was to test if the progression model is able to adapt itself to any
type of player (according to the previous categories) to provide enjoyable and challenging gameplay
experiences every time a player starts a new game session.

To validate these hypothesis we compared the developed progression model in this study with the
previous progression model already being used in the testbed game. Hence, we tested two different
versions of a progression model on the arena endless level of Smash Time:

• Smash Time O - Old progression model that is on the game on the stores at this moment, that
takes into account the difficulty of the challenges combined with the duration of the game session;

• Smash Time N - New progression model created during this dissertation that analyses the perfor-
mance of the player facing the challenges combined with the control of the variety of the generated
content.

The playtest started with a brief presentation of the testbed game, without mentioning what was going
to be tested, after it was said to the participants that they would have to answer a questionnaire in the
end, again without mentioning what was going to be asked, to not influence the gameplay experience
and the answers collected in the questionnaires.

After the presentation, the participants played the first three campaign levels that serve as game
tutorials to present the game and its content and to teach the players how the gameplay mechanics
work, during this time the participants were able to ask any questions if they were not understanding
something.

Following this initial contact with the game, through the tutorial levels, we made a short demonstration
of the arena level, focusing on the time component, on how it works and how could the players extend
the time to achieve better scores.

After the arena game mode demonstration, the participants had the opportunity to ask any remaining
questions before starting the real playtest. There was no minimum nor maximum number of arena runs
for the playtest, so that the participants could play as much as they wanted and during the time they
wanted.

During this phase of the playtest there was no intervention by the observer, except when requested
by the participants.

When the participants decided to stop playing, the Game Experience Questionnaire (Appendix E)
was given to them, followed by an unstructured interview in order to gather some additional feedback
from the participants.

After finishing the participants part in the playtest, the observer then had to collect the game data that
was automatically tracked and registered by the game, relative to: the total arena gameplay duration;
the number of arena starts; the number of times the Hero was attacked by an enemy; the number of
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times the session ended with time out; and the number of times the user quit an arena run (Appendix D)
and fill the Data Collected Questionnaire (Appendix F).

As mentioned before, we used two different questionnaires, for each version (old and new) of the
progression model, to collect data from the playtests with the participants, relative to their experience
and the game data about what happened in the game during the playtests:

• Game Experience Questionnaire (Appendix E) - Answered by the users at the end of the playtest
session. The game experience questionnaire is the core module part of a bigger questionnaire
called ”The Game Experience Questionnaire”. [42];

• Game Data Collected Questionnaire (Appendix F) - Answered by the person responsible for con-
ducting the playtest session, without the knowledge of the users, with the data automatically
tracked and collected by the game and accessible through the SRDebugger Tool [43], that was
checked inside the game, on-device, in the end of each playtest session.

This resulted in four different questionnaires:

• Game Experience Questionnaire - Old Arena;

• Game Experience Questionnaire - New Arena;

• Game Data Collected Questionnaire - Old Arena

• Game Data Collected Questionnaire - New Arena

The Game Experience Questionnaire will try to answer if the new progression model changed the
gameplay experience and the Data Collected Questionnaire will try to show if the players spent more
time playing the game or not, and if they play more times than with the previous progression model.

5.2.2 Demographic Results

In this sub section we will report the demographic results of the gameplay tests. The user tests group
was composed by 32 people, 16 for each arena version with the respective progression models.

Next, there is a descriptive analysis of the relevant demographics data: Figure 5.1 shows the rela-
tion the participants have with videogames and the frequency they play them; Figure 5.2 presents the
participants familiarity with the smasher genre on mobile videogames; and Figure 5.3 indicates if the
participants had played the used testbed mobile videogame, Smash Time, before the playtest.

5.2.3 Quantitative Evaluation Results

Table 5.1 presents a set of game data tracked and collected during the playtests with users, it shows
the average values collected, since the users start playing the arena game mode during the playtests
(after the playtest introduction, playing the tutorial levels and the arena mode demonstration), relative
to: the overall duration of the arena playtest, in seconds; the count of starts of a new arena run; the
number of times the users got to an arena game over due to 1) the hero being attacked by enemies and
2) the time running out; and the number of times the users had quit a run by themselves, both for the old
arena version and the new arena version developed during this dissertation with the progression model
proposed in this study.

In this table, it is possible to confirm that the overall gameplay duration, as well as the number of
starts of a new run has increased from the old to the new arena versions.
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Figure 5.1: Play Games Frequency: Old Arena VS New Arena.

Figure 5.2: Game Genre Familiarity: Old Arena VS New Arena.

Table 5.1: Game data collected (average values) during the playtests: Old Arena VS New Arena.

None of the variables passed the Shapiro-Wilk normality test, hence, we used non-parametric sta-
tistical test. Regarding the Mann-Whitney U statistical test on the above mentioned variables, there
was statistical significance on the following variables: PlayTestDuration; ArenaStartCount, and Time-
OutCount, in all cases with p <0.001, which means there is a clear difference in both versions, whereas
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Figure 5.3: Played Smash Time: Old Arena VS New Arena.

the new arena version with the developed progression model on this dissertation got better results than
the old arena version. More data results from this evaluation can be consulted in the Appendix H.

5.2.4 Qualitative Evaluation Results

In this section we will present the results gathered from the Game Experience Questionnaire given to
the participants.

Firstly, we will do a macro evaluation composed by 7 components, each representing a group of
variables from the original Game Experience Questionnaire. These variables and respective analysis
were based on the scoring guidelines for the Game Experience Questionnaire Core Module [42], and
were grouped as shown in the Appendix G. From these 7 aggregating variables, the variables Sen-
soryAndImaginativeImmersion and Flow follow normal distributions on the Shapiro-Wilk normality test.
Also, on the Mann-Whitney U test, none of these variables have shown statistical significance.

Except in the case of the variables FeltCouldExplore (Item: I felt that I could explore things.) and
PutLotEffot (Item: I had to put a lot of effort into it), none of the other variables passed the Shapiro-Wilf
normality test. Regarding the non-parametric Mann-Whitney U tests, the variables WasTiresome (Item:
I found it tiresome.) and WasImpressive (Item: I found it impressive.) have statistical significance with
p <0.05. These results suggest the participants felt the new arena version was more impressive but
also more tiring in comparison with the old arena version. More data results from this evaluation can be
consulted in the Appendix I.

After doing the playtest, and answering the Game Experience Questionnaire, an unstructured inter-
view was conducted in order to gather some additional feedback by the participants.

Some of the most relevant observations made by the participants were, in a positive point of view,
that the game seemed to become more difficult as time was passing by and that they had the feeling
that there were some moments where the game got more demanding taking their skills to the limit,
sometimes a little too much becoming a bit exhaustive, opposing with more relaxed moments where
they could rest for a while, before engaging again in a more challenging phase providing an interesting
experience by making the players go through various states of mind and experiencing different moods
while playing. On a not so positive point of view some of them claimed that the game got too hard very
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fast and they couldn’t really follow that increase in the difficulty of the content that was being given to
them, which means the progression curve and the variety curve should be tweaked.

After answering the unstructured interview, it was explained what the implemented progression model
is used for, what were the users testing and what was the propose of the playtests. The reactions were
of surprise with the confirmation of the feeling that the game was progressively becoming more difficulty
(challenging) over time.

5.2.5 Discussion

The comments from the participants suggest that the players’ acceptance was quite good, as they have
had the perception of progression, as the game kept providing challenging content as their skill level was
increasing, getting the feeling that the game was reacting to what they were learning and doing, and
trying to correspond giving them more challenging content. These comments are also complemented
by the data collected during the playtest sessions for the qualitative and quantitative evaluation. In an
overall picture based on these results, we can say that they are very encouraging to keep developing
this progression model believing that it has what it needs to achieve its main objectives, that we first
set out for the progression model, like providing challenging and more engaging gameplay experiences,
with the potential to increase the duration of each game session in endless single player video games.

After the informal interview, it was explained to the participants that they were testing a progression
model that generates game content in real time while they were playing based on their skill level, as the
game was constantly evaluating their performance overcoming the challenges that were being given to
them.

The reactions varied from surprise, when knowing that the game was capable of understanding how
they were playing, to the confirmation of the feeling that the game was progressively becoming more
difficult and challenging over time.

Some of the participants said that they had played several endless games that invariably got ex-
tremely difficult and frustrating at some point after some minutes of gameplay leading to the feeling that
the game was not fair because it increased its speed too much, or increased the amount and difficulty of
obstacles or enemies to a point where it was not possible to overcome and keep playing, almost forcing
the players to get a game over and start all over again from the beginning in a new game run.

Concluding these observations, some participants suggested that those games should have used a
progression model similar to the one that was developed and integrated in the testbed game and maybe
with that they would have played those games for some more time before putting them aside.

On the one hand, some participants, mostly the ones that had already experience playing the testbed
game, were getting better and better from run to run while, on the other hand some of participants with
no experience in the game, had the best performance (and score) in the first runs, that could be a
sign that the progression model is reacting to the player skill and evolving too rapidly for the players to
follow that progression. One possible change that can be made on the Player Performance Model is
to smooth the game difficulty evolution, in order to not demand too much from the novice players, that
is to increase the number of last performances the progression model keeps tracking for each tag, in
order to take longer to react and evolve to the player skill. Therefore, the progression model gives the
players more time to learn how to play but also to get really good at the current challenge level of the
game before the game rises up its challenge level again. This could be done, for instance, by changing
the recorded player performance data for each tag on the Player Performance Model from the current
10 last performance values being used, to 20 performance values for each tag. This change means that
the progression model will need more challenges and time to react to the player skill evolution, providing
a smoother player skill progression.
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Another possible change to try to mitigate this steep and fast evolution on the challenge level is to
tune the performance curve formula to be smoother over time. Although the performance curve had
been tweaked several times during the preliminary evaluations, due to the playtests with real players, as
reported above in Section 5.1 of this chapter, it looks like it still needs more fine tuning to get closer to
the perfect balance.

One thing that we believe that does not need more tweaking are the bootstrap performance values of
each tag, that were also tweaked several times during the preliminary evaluation, because according to
the results it looks like that the game provides a good starting gameplay experience to both novice and
expert players of the testbed game even using the same bootstrap performance values to all players.

In the first testing phase, we should have used both expert and novice players of the testbed game
with the same proportions instead of focusing more in the expert players feedback, because as the
results from the playtest sessions suggests, the bootstrap values are good for every player, novice or
expert, but the performance curve was more adapted for expert players or players with experience in the
game but on the other hand, the progression model challenge level, based on the performance curve,
evolved too fast for novice players.

5.3 Summary

According to the evaluations done to the developed progression model and the results that we got
from those evaluations, we believe that the approach to model the player skill progression was a good
approach and has a great potential to be used in a future update to the testbed game, as well as to be
applied to other endless single player video games.

Players did play the game more times, effectively, and for longer periods of time, which was the two
main objectives of our work. The feedback received through the questionnaires, answered after the
playtest sessions, also suggest that players found this approach more impressive and challenging than
the previous progression model version that just increased the difficult of the game, through preset rules,
based on the game designer intuition combined with the game session duration.

Therefore, and to complete the analysis of the evaluation of the potential and success of our ap-
proach, we believe that the approach to develop a progression model that takes into account the real
player skill and the content variety, was successfully implemented into a robust and dynamic skill-based
progression model.
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Chapter 6

Conclusion

In this dissertation, we presented a skill-based progression model for endless single player videogames
based on two main concepts: player performance and content variety. While implementing this progres-
sion model, we focused on addressing the main research objective of this dissertation, more specifically:
creating more challenging and engaging gameplay experiences, increasing the duration of the game
sessions on endless single player videogames. To achieve this goal, we have used Smash Time, a
mobile smasher videogame, as a testbed game for our experiments.

Given that the main reason videogames are created is to give enjoyable and challenging gameplay
experiences to the players, we focused in the player role while playing a game since the beginning of
this study. To that extent, we decided to create a player model to understand better the player, more
specifically, a player model that would assess the player skill and its evolution as he/she progresses
in the game. The other focus of attention was the variety of the generated game content, that should
present new and varied content at an appropriate pace, letting the player recognize some patterns while
at the same time, be constantly presenting new and mixed content. Starting from these premises,
we used the concepts of Challenges, Obstacles and Tags to develop the three main components of
the developed progression model: the Player Performance Model ; the Content Variety Model ; and the
Content Generation Model.

An experiment, with both novice and experienced players to the testbed game, was conducted to find
the best bootstrap player performance values to start the progression model to adapt the game content.
After finding a good starting point to the Player Performance Model, both quantitative and qualitative
experiments were done through playtest sessions with real players. In the end of the playtest session,
each player answered a game experience questionnaire. The data collected from the questionnaires was
later combined with game data automatically tracked and collected by the game while the playtesters
were trying the testbed game with the developed progression model.

The main objectives of this evaluation were to test if the progression model is able to adapt itself to
any type of player providing enjoyable and challenging gameplay experiences every time a player starts
a new game session and to confirm if the progression model is able to increase the number of times the
game is played as well as to increase the duration of each game session.

As the results suggest, we were able to successfully increase, both the duration of each game
session and the number of starts of a new game run. We believe to have managed to take the players
faster to their gameplay flow channel, in order to make the game interesting, fun and challenging for
longer periods of time, by preventing the players to get through a phase of an easy difficulty level in the
beginning of every game run, that eventually will make the game boring in the beginning. Besides that,
by allowing the players to stay in their gameplay flow channel for longer periods, we also believe to have
prevented the game to become unsustainably difficult after a while and, thus, becoming, at some point,
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frustrating to the players.
By not using preset game flow rules, that lead to linear gameplay experiences, like many games do

and like the previous progression model used in the testbed game did, we believe to have managed to
create more dynamic gameplay experiences that, ultimately, also increase the replayability and life time
of the game.

We believe this is a good progression model that allows to reduce the game designer amount of
work, such as to define a dependency flow chart to guide the PCG, as it happens in some games, or
to define the probabilities of specific content with a difficulty level associated in relation to the duration
of the game session as it was happening in the previous progression model that is currently being used
in the official version of the testbed game and in many other endless games. This progression model
supports the game designer’s work, carrying the task to evaluate the player skill level and decide the
game challenge level at any given moment.

Finally, we believe to have developed a promising skill-based progression model that procedurally
generates game content based on the player skill and content variety. An appropriate estimator of player
skill and a robust progression model were designed, implemented and tested in this dissertation. Hence,
we argue that the presented approach to model progression in an endless single player video game, has
a great potential to be applied successfully to other endless games and even to videogames in general.
This progression model is data persistent and can be used in the normal levels (not endless) of the
campaign mode of a videogame since the player performance model may be carried forward as the
player progresses through the game. In order to generalize the progression model to other videogames,
the Challenges, Obstacles and Tags concepts must be adapted to the specific context of the videogame
content. Lastly and, once the player skill and performance evaluation were quantitatively modelled in the
Player Performance Model, one just needs to adapt the performance measurement method to what is
most suitable to the game in which is being implemented. Additionally, the progression model proposed
showed promising results that also demonstrate the potential for extensibility to other games.

6.1 Future Work

To conclude this dissertation study, we propose to extend the functionality of 2 components of the devel-
oped progression model, the Player Performance Model and the Content Generation Model as explored
bellow:

1. Extend Player Performance Model:

• Refine the information used to calculate the player performance with the inclusion of the
player’s reaction time to an obstacle. If the player is not able to overcome an obstacle the
associated performance value will still be 0, but when the player is able to overcome an
obstacle its performance value can decrease from 1, as soon as the obstacle appears, to 0
as the reaction time tends to infinity.

• Create a new depth level in the Player Performance Model by combining the existing player
skill data with one of the existing models of the player type, like the Myers-Briggs personality
type (conqueror, manager, wanderer and participant).

2. Extend Content Generation Model:

• Use previously collected data about the player performance and content variety to influence
the generation of the new challenges. A part of the new challenges data populations or the
whole population that is generated every time a new challenge must be created and presented
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to the player can use some of the information already stored in the progression model, in order
to leverage the utility value of the new challenges.

• Extend the Challenge component to support the functionality of composed challenges. The
progression model could be able to create completely new challenges, in real time, from
the combination of previously created challenges by the game designer that compose the
challenges’ library. Additionally, these new composed challenges created in real time, could
be stored in the challenges’ library to be later used in future game sessions.
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Heroes 
 
Before starting defeating the enemies, players have to choose one hero to team up (Figure 1). Although                 
after choosing the hero team mate, players can, before starting a new level, change the hero that teams                  
up with them to better face the challenges ahead according to the hero super power (For example: Some                  
heroes spend less energy on their home land scenario). Every time one enemy is smashed by the player,                  
the hero throws a magic ball to rescue the animals that were eaten by that enemy. This means that the                    
hero becomes a target to the enemies, that will constantly try to attack him/her. If the hero is attacked in                    
the arena game mode it is game over and, if the hero is attacked in the campaign game mode, the player                     
has a limited time to save the hero and if that does not happen, it is game over as seen in Figure 2.  
 

        
  Figure 1: Smash Time Heroes.    Figure 2: Smash Time enemy attacking the hero and Game Over. 
 

Campaign Mode 
 
This game mode is composed by different areas, each with 15 levels with a boss to fight at the final level 
of each area (Figure 3). While playing the campaign, players can unlock several heroes to team up with. 
To move forward and progress in the Campaign mode, players need to get the minimum score points to 
unlock the first star of each levels, although they can unlock until 3 stars to get more and better rewards.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Smash Time Campaign Mode Map. 

Appendix A

Testbed Game: Smash Time
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Algorithm 1:​ Arena’s algorithm to manage the procedural content generation of the game and 
record player’s performance.  
 
1 ArenaUpdate ();  
 
Input :​ void  
Output : ​void 
 
 /* A new challenge is generated and activated when there is still one obstacle active from the previous 
challenge to avoid long idle times between a new challenge activation, the spawning of its obstacles and 
their entrance in the screen. */ 
 
2​ if​ ActiveObstaclesList.Count = 1 ​then  
3 var newChallengePopulation = GenerateChallengePopulation();  
4 var nextChallenge = SelectNextChallenge(newChallengePopulation); 
5 ActivateChalenge(nextChallenge); 
6 ​end  
 
/*Analyze player and obstacles’ actions+Calculate player performance+Store player performance data.*/  
 
7 ​if​ player smashes one obstacle then  
8 ​ if ​obstacle == PurpleEnemy then  
9 Save performance of original obstacle tag with 1;  
10 ​end  
11 Increment the taps done on the obstacle challenge by one;  
12 ​end  
 
13 ​if​ obstacle runs away from the player and escapes with success then  
14 Save performance of original obstacle tag with 0;  
15 ​end  
 
16 ​if​ obstacle attacks the hero then  
17 Save performance of original obstacle tag with 0;  
18 ​end  
 
19 ​foreach​ challenge activeChallengei ∈ ActiveChallengesList ​do  
20 ​if​ activeChallengei.ActiveObstaclesList.Count == 0 ​then  
21 DeactivateChallenge(activeChallengei);  
22 ​end  
23 ​end  
 
 

 
 
 

Appendix B

Progression Model Pseudo Code



Algorithm 2:​ Generate Challenge Data Population algorithm to create a new population of 
metadata challenges with content from the Challenges in the library and extra random content.  
 
1 GenerateChallengeDataPopulation ();  
 
Input :​ void  
Output :​ ChallengeDataPopulation  
 
2 var newChallengeDataPopulation = previousChallengeDataP opulation;  
3​ for ​( i = 0; i < ChallengeP opulationCount; i + + ) {  
4 var randomChallenge = SelectRandomChallenge(ChallengeLibrary);  
5 PopulateChallengeData(randomChallenge, newChallengeDataPopulation[i]);  
6 }  
 
 

 
 
 
Algorithm 3:​ Extract data from a Challenge from the library and populate the Challenge Data 
object with the content from the original Challenge and extra random obstacles’ data.  
 
1 PopulateChallengeData (); 
 
Input :​ Challenge, ChallengeData  
Output :​ void  
 
2​ foreach​ wave wi ∈ Challenge ​do  
3 Create new wave on ChallengeData;  
4 Copy wave waypoints to the new wave;  
5 Set wave obstacles’ quantity;  
6 Set wave obstacles’ type;  
7 Set wave obstacles’ order;  
8 Add wave obstacles’ Tags to ChallengeData;  
9​ end  
 
10 Count the number of taps needed to overcome all the spawned obstacles and the obstacles that will 
appear from the originally spawned obstacles of the ChallengeData and classify the ChallengeData with 
the correspondent Challenge Taps Tag;  
11 Copy the challenge game designer custom tags to the ChallengeData object;  
12 Set a random pace to the ChallengeData and classify the ChallengeData with a Pace Tag;  
 
 

 
 
 



Algorithm 4:​ Select Next Challenge algorithm that analyzes one challenge data population and 
selects the best possible challenge to be activated next.  
 
1 SelectNextChallenge ();  
 
Input :​ ChallengeDataPopulation  
Output :​ ChallengeData  
 
2 var wantedChallengeUtility = (NextChallengePerformance(calculatedChallengeU tilityCounter)  

+ NextChallengeVariety(calculatedChallengeUtilityCounter))/2;  
3 float wantedChallengeUtility = NextChallengeWantedPerformance ∗  

UTILITY_PERFORMANCE_WEIGHT  
+ NextChallengeWantedVariety ∗ UTILITY_VARIETY_WEIGHT;  

4 ChallengeData closestChallenge = ChallengeDataPopulation[0];  
5 float closestChallengeDistance    = 1f;  
6 ​foreach ​ChallengeData challengeDatai ∈ ChallengeDataP opulation ​do  

/* Use an heuristic function that analyses the ChallengeData tags to classify the utility of the  
challenge regarding its predicted performance and variety. */  

7 float challengeUtility = CalculateChallengeUtility(challengeDatai);  
8 float challengeUtilityDistance = System.Math.Abs(challengeUtility - wantedChallengeUtility);  
9 ​if ​challengeUtilityDistance ¡ closestChallengeDistance ​then  
10 closestChallenge = challengeDatai ;  
11 closestChallengeDistance = challengeUtilityDistance;  
12 ​end  
13 ​end  
14 return closestChallenge;  
 
 

 
 
 
Algorithm 5:​ Activate Challenge method that activates each wave in the Challenge and spawns 
its obstacles.  
 
1 ActivateChallenge ();  
 
Input :​ Challenge  
Output :​ void  
 
2 ​foreach ​Wave wavei ∈ Challenge ​do  
3 ActivateWave(wavei);  
4 ​foreach ​Obstacle obstaclei ∈ wavei ​do  
5 ActivateObstacle(obstaclei); 
6 ​end  
7 ​end  
 

 



Algorithm6:​ Deactivate Challenge method.  
 
1 DeactivateChallenge ();  
 
Input :​ Challenge  
Output :​ void  
 
/* Calculate Player Performance */  
2 CalculatePlayerPerformance(Challenge);  
 
 

 
 
 
Algorithm 7:​ Deactivate Challenge method to calculate the final player performance to the 
Challenge.  
 
1 CalculatePlayerPerformance ();  
 
Input :​ Challenge  
Output : ​float  
 
/* Calculate the tap score of the challenge */  
 
2 float ChallengeTapsScore = Taps Done/Taps Needed;  
3 Assign Challenge Taps Score to the performance value of the Challenge Tags (Game Designer, Pace 
and Taps) performance history; 
4 Calculate obstacles tags performance;  
 
/* Calculate the global challenge player performance value*/  
 
5 ChallengePerformance = GameDesignerTagsPerformance * GameDesignerTagsPerformanceWeight 

+ PaceTagPerformance * PaceTagPerformanceWeight 
+ TapsTagPerformance * TapsTagPerformanceWeight  
+ ObstacleTagsPerformance * ObstacleTagsPerformanceWeight;;  

 
 

 
 
 
Algorithm 8:​ Calculate Challenge Utility method estimates an utility value to allow the decision of the 
selection of the possible next best challenge to be generated.  
 
1 CalculateChallengeUtility (ChallengeData);  
 
Input : ​ChallengeData  
Output :​ float  



 
2 float challengeUtility = PredictChallengePerformance(challengeData) 

∗.UTILITY_PERFORMANCE_W EIGHT  
+ PredictChallengeVariety(challengeData) 
∗.UTILITY_VARIETY_WEIGHT;  

 
 

 
 
 
 ​Algorithm 9:​ Predict Challenge Performance method estimates what would possibly be the 
performance value of the player against this challenge based on the recorded player 
performance data built on the Player Performance Model.  
 
1 PredictChallengePerformance (ChallengeData); 
 
Input :​ ChallengeData  
Output :​ float  
 
/* Calculate Challenge Pace Tag performance. */  
 
2 float paceTagPerformance = PlayerData.TagsPerformance[challengeData.PaceTag];  
 
/* Calculate Obstacle Name Tags performance. */  
3 float purplePerformance = PlayerData.TagsPerformance[EOBSTACLE_NAME.PURPLE];  
4 float bluePerformance = PlayerData.TagsPerformance[EOBSTACLE_NAME.BLUE];  
5 float greenPerformance = PlayerData.TagsPerformance[EOBSTACLE_NAME.GREEN];  
6 float redPerformance = PlayerData.TagsPerformance[EOBSTACLE_NAME.RED];  
7 int purpleObstaclesCount = challengeData.ObstaclesCount[EOBSTACLE_NAME.PURPLE];  
8 int blueObstacleCounts = challengeData.ObstaclesCount[EOBSTACLE_NAME.BLUE];  
9 int greenObstaclesCount = challengeData.ObstaclesCount[EOBSTACLE_NAME.GREEN];  
10 int redObstaclesCount = challengeData.ObstaclesCount[EOBSTACLE_NAME.RED];  
11 int totalObstaclesCount = purpleObstaclesCount + blueObstaclesCount  

+ greenObstaclesCount + redObstaclesCount;  
12 float obstacleTagsPerformance = ((purplePerformance ∗ purpleObstaclesCount  

+ bluePerformance ∗ blueObstaclesCount  
+ greenP erformance ∗ greenObstaclesCount  
+ redPerformance ∗ redObstaclesCount)/totalObstaclesCount);  

 
/* Calculate Challenge Taps Tag performance. */  
 
13 float tapsTagPerformance = TagsPerformance[challengeData.TapsTag];  
 
/* Calculate Challenge Game Designer Tag performance. */  
 
14 float gameDesignerTagsPerformance = 0f;  
15 ​foreach ​Wave gameDesignerTagi ∈ challengeData.GameDesignerTags ​do  



16 gameDesignerTagsPerformance += PlayerData.TagsPerformance[gameDesignerTagi ];  
17 gameDesignerTagsPerformance /= challengeData.GameDesignerTags.Count;  
18 ​end  
19 float predictedChallengePerfomance =  

paceTagPerformance ∗ PACE_TAG_PERFORMANCE_WEIGHT  
+ tapsTagPerformance ∗ TAPS_TAG_PERFORMANCE_WEIGHT  
+ obstacleTagsPerformance * OBSTACLE_TAGS_PERFORMANCE_WEIGHT  
+ gameDesignerTagsPerformance ∗ GAME_DESIGNER_TAGS_PERFORMANCE_WEIGHT; 

20 return predictedChallengePerfomance; 
 
 

 
 
 
Algorithm 10:​ Predict Challenge Variety method estimates what would be the variety value of 
the argument challenge based on the recorded tags’ usage data built on the Content Variety 
Model.  
 
1 PredictChallengeVariety (ChallengeData);  
 
Input :​ ChallengeData  
Output : ​float  
 
/* Calculate Challenge Pace Tag variety. */  
 
2 float paceTagVariety = GetTagVariety(challengeData.PaceTag);  
 
/* Calculate Obstacle Name Tags variety. */ 
 
3 float purpleVariety = GetTagVariety(EOBSTACLE_NAME.PURPLE);  
4 float blueVariety = GetTagVariety(EOBSTACLE_NAME.BLUE);  
5 float greenVariety = GetTagVariety(EOBSTACLE_NAME.GREEN);  
6 float redVariety = GetTagVariety(EOBSTACLE_NAME.RED);  
7 int purpleObstaclesCount = challengeData.ObstaclesCount[EOBSTACLE_NAME.PURPLE] ; 
8 int blueObstacleCounts = challengeData.ObstaclesCount[EOBSTACLE_NAME.BLUE];  
9 int greenObstaclesCount = challengeData.ObstaclesCount[EOBSTACLE_NAME.GREEN];  
10 int redObstaclesCount = challengeData.ObstaclesCount[EOBSTACLE_NAME.RED];  
11 int totalObstaclesCount = purpleObstaclesCount  

+ blueObstaclesCount  
+ greenObstaclesCount  
+ redObstaclesCount;  

12 float obstacleTagsVariety = ((purpleVariety ∗ purpleObstaclesCount  
+ blueV ariety ∗ blueObstaclesCount  
+ greenVariety ∗ greenObstaclesCount  
+ redVariety ∗ redObstaclesCount)/totalObstaclesCount); 

 
 



/* Calculate Challenge Taps Tag variety. */  
 
13 float tapsTagVariety = GetTagVariety(challengeData.TapsTag);  
 
/* Calculate Challenge Game Designer Tag variety. */  
 
14 float gameDesignerTagsVariety = 0f;  
15 ​foreach ​Wave gameDesignerT agi ∈ challengeData.GameDesignerT ags ​do  
16 gameDesignerTagsVariety += GetTagVariety(gameDesignerTagi);  
17 gameDesignerTagsVariety /= challengeData.GameDesignerTags.Count;  
18 ​end  
19 float predictedChallengeVariety = paceTagVariety ∗ PACE_TAG_VARIETY_WEIGHT  

+ tapsTagVariety ∗ .TAPS_TAG_VARIETY_WEIGHT 
+ obstacleTagsVariety ∗ OBSTACLE_TAGS_VARIETY_WEIGHT 
+ gameDesignerTagsVariety ∗ GAME_DESIGNER_TAGS_VARIETY_WEIGHT; 

20 return predictedChallengeVariety; 
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Smash Time Playtest 
 

Procedure Guideline 
 

 
 
 
1 - Playtest and testbed game presentation 5 minutes 
 
2 - Tutorial levels: Levels 1,2,3 Campaign mode 10 minutes 
 
3 - Arena gameplay demonstration 3 minutes 
 
4 - Questions and answers 2 minutes 
 
3 - Play test on the Arena level Undefined 
 
4 - Questionnaire presentation and answering 10 minutes 

 
 
 

Total playtest duration 30+ minutes 

Appendix C

Playtest Procedure Guideline
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Smash Time Playtest 
 

Game Data Collected Guideline 
 

 
 
 
Track and register game data: 
 
 
- Total arena gameplay duration 
 
- Number of arena starts of a new run 
 
- Number of times the hero gets attacked by an enemy (Game Over) 
 
- Number of times the game session ended with time out (Game Over) 
 
- Number of times the user quit a game session by himself 

Appendix D

Playtest Game Data Collected
Guideline
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Appendix E

Game Experience Questionnaire





Appendix F

Game Data Collected Questionnaire
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Competence: 
 

- I felt skilful 
- I felt competent 
- I was good at it  
- I felt successful 
- I was fast at reaching the game's targets 

 
 
Sensory and Imaginative Immersion​: 
 

- I was interested in the game's story 
- It was aesthetically pleasing  
- I felt imaginative  
- I felt that I could explore things  
- I found it impressive  
- It felt like a rich experience  

 
 
Flow 
 

- I was fully occupied with the game 
- I forgot everything around me 
- I lost track of time 
- I was deeply concentrated in the game 
- I lost connection with the outside world 

 
 
Tension/Annoyance 
 

- I felt annoyed 
- I felt irritable 
- I felt frustrated 

 
 

Appendix G

Scoring Guideline Game Experience
Questionnaire



Challenge 
 

- I thought it was hard 
- I felt pressured 
- I felt challenged 
- I felt time pressure 
- I had to put a lot of effort into it 

 
 
Negative affect 
 

- It gave me a bad mood 
- I thought about other things 
- I found it tiresome 
- I felt bored 

 
 
Positive affect 
 

- I felt content 
- I thought it was fun 
- I felt happy 
- I felt good 
- I enjoyed it 

 
Note: ​Scoring guidelines from the “The Game Experience Questionnaire Core Module” [41]. 



 
 

Quantitative Evaluation 
 

 
Tests of Normalityc,d 

 
Version 

Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Playtest Duration (s) 

 

Old Arena .219 16 .039 .852 16 .015 

New Arena .149 16 .200* .927 16 .219 

Arena Start Count Old Arena .302 16 .000 .790 16 .002 

New Arena .270 16 .003 .812 16 .004 

Hero Attacked Count Old Arena .314 16 .000 .750 16 .001 

New Arena .313 16 .000 .725 16 .000 

Time Out Count Old Arena .292 16 .001 .861 16 .020 

New Arena .227 16 .026 .790 16 .002 
 

*. This is a lower bound of the true significance. 

a. Lilliefors Significance Correction 

c. UserQuitCount is constant when Version = Old Arena. It has been omitted. 

d. UserQuitCount is constant when Version = New Arena. It has been omitted. 
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Quantitative Evaluation Results
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Qualitative Evaluation 
 
 

Tests of Normality 
 

 
Version 

Shapiro-Wilk Shapiro-Wilk 

Statistic df Sig 

Competence Old Arena .879 16 .038 

New Arena .926 16 .213 

Sensory And Imaginative Immersion Old Arena .945 16 .416 

New Arena .960 16 .668 

Flow Old Arena .973 16 .888 

New Arena .966 16 .767 

Tension And Annoyance Old Arena .718 16 .000 

New Arena .787 16 .002 

Challenge Old Arena .964 16 .738 

New Arena .878 16 .037 

Negative Affect Old Arena .704 16 .000 

New Arena .883 16 .043 

Positive Affect Old Arena .835 16 .008 

New Arena .953 16 .533 
 
 

*. This is a lower bound of the true significance. 

a. Lilliefors Significance Correction 

 
 
 
 
 
 
 
 
 
 
 
 

Appendix I

Qualitative Macro Evaluation Results



Mann-Whitney Test 
Ranks 

 Version N Mean Rank Sum of Ranks 

Competence Old Arena 16 16.34 261.50 

New Arena 16 16.66 266.50 

Total 32   

Sensory And Imaginative Immersion Old Arena 16 14.09 225.50 

New Arena 16 18.91 302.50 

Total 32   

Flow Old Arena 16 14.56 233.00 

New Arena 16 18.44 295.00 

Total 32   

Tension And Annoyance Old Arena 16 14.41 230.50 

New Arena 16 18.59 297.50 

Total 32   

Challenge Old Arena 16 14.94 239.00 

New Arena 16 18.06 289.00 

Total 32   

Negative Affect Old Arena 16 13.31 213.00 

New Arena 16 19.69 315.00 

Total 32   

Positive Affect Old Arena 16 15.06 241.00 

New Arena 16 17.94 287.00 

Total 32   

 
Test Statisticsa 

 Competence 

Sensory And 

Imaginative  

Immersion 

Flow 
Tension And 

Annoyance 
Challenge 

Negative 

Affect 

Positive 

Affect 

Mann-Whitney U 125.500 89.500 97.000 94.500 103.000 77.000 105.000 

Wilcoxon W 261.500 225.500 233.000 230.500 239.000 213.000 241.000 

Z -.096 -1.456 -1.172 -1.342 -.947 -2.049 -.888 

Asymp. Sig. 

(2-tailed) 
.924 .145 .241 .179 .344 .040 .375 

Exact Sig. 

[2*(1-tailed Sig.)] 
.926b .149b .254b .210b .361b .056b .402b 

a. Grouping Variable: Version 

 b. Not corrected for ties. 



Qualitative Evaluation 
 
 

Mann-Whitney U Test 
Ranks 

 Version N Mean Rank Sum of Ranks 

Felt Content Old Arena 16 16.44 263.00 

New Arena 16 16.56 265.00 

Total 32   

Felt Skilful Old Arena 16 16.13 258.00 

New Arena 16 16.88 270.00 

Total 32   

Interested In Story Old Arena 16 15.56 249.00 

New Arena 16 17.44 279.00 

Total 32   

Was Fun Old Arena 16 14.00 224.00 

New Arena 16 19.00 304.00 

Total 32   

Was Fully Occupied Old Arena 16 16.72 267.50 

New Arena 16 16.28 260.50 

Total 32   

Felt Happy Old Arena 16 16.56 265.00 

New Arena 16 16.44 263.00 

Total 32   

Gave Bad Mood Old Arena 16 15.00 240.00 

New Arena 16 18.00 288.00 

Total 32   

Thought Other Things Old Arena 16 16.06 257.00 

New Arena 16 16.94 271.00 

Total 32   

Was Tiresome Old Arena 16 12.91 206.50 

New Arena 16 20.09 321.50 

Total 32   

 

 

 

 

 

Appendix J

Qualitative Micro Evaluation Results



Felt Competent Old Arena 16 17.56 281.00 

New Arena 16 15.44 247.00 

Total 32   

Was Hard Old Arena 16 14.47 231.50 

New Arena 16 18.53 296.50 

Total 32   

Was Aesthetically Pleasing Old Arena 16 15.69 251.00 

New Arena 16 17.31 277.00 

Total 32   

Forgot Everything Around Old Arena 16 15.09 241.50 

New Arena 16 17.91 286.50 

Total 32   

Felt Good Old Arena 16 15.47 247.50 

New Arena 16 17.53 280.50 

Total 32   

I Was Good Old Arena 16 15.63 250.00 

New Arena 16 17.38 278.00 

Total 32   

Felt Bored Old Arena 16 16.50 264.00 

New Arena 16 16.50 264.00 

Total 32   

Felt Successful Old Arena 16 16.97 271.50 

New Arena 16 16.03 256.50 

Total 32   

Felt Imaginative Old Arena 16 15.84 253.50 

New Arena 16 17.16 274.50 

Total 32   

Felt Could Explore Old Arena 16 15.59 249.50 

New Arena 16 17.41 278.50 

Total 32   

Enjoyed Old Arena 16 15.09 241.50 

New Arena 16 17.91 286.50 

Total 32   

Fast Reaching Targets Old Arena 16 17.06 273.00 

New Arena 16 15.94 255.00 

Total 32   
 

 

 



Felt Annoyed Old Arena 16 14.44 231.00 

New Arena 16 18.56 297.00 

Total 32   

Felt Pressured Old Arena 16 15.06 241.00 

New Arena 16 17.94 287.00 

Total 32   

Felt Irritable Old Arena 16 16.63 266.00 

New Arena 16 16.38 262.00 

Total 32   

Lost Time Track Old Arena 16 15.84 253.50 

New Arena 16 17.16 274.50 

Total 32   

Felt Challenged Old Arena 16 14.50 232.00 

New Arena 16 18.50 296.00 

Total 32   

Was Impressive Old Arena 16 13.13 210.00 

New Arena 16 19.88 318.00 

Total 32   

Was Deeply Concentrated Old Arena 16 14.50 232.00 

New Arena 16 18.50 296.00 

Total 32   

Felt Frustrated Old Arena 16 13.72 219.50 

New Arena 16 19.28 308.50 

Total 32   

Was Rich Experience Old Arena 16 14.50 232.00 

New Arena 16 18.50 296.00 

Total 32   

Lost World Connection Old Arena 16 14.56 233.00 

New Arena 16 18.44 295.00 

Total 32   

Felt Time Pressure Old Arena 16 16.19 259.00 

New Arena 16 16.81 269.00 

Total 32   

Put Lot Effort Old Arena 16 16.59 265.50 

New Arena 16 16.41 262.50 

Total 32   

 



Test Statisticsa 

 

 
Felt 

Content 

Felt 

Skilful 

Interested 

In Story 

Was 

Fun 

Was Fully 

Occupied 

Mann-Whitney U 127.000 122.000 113.000 88.000 124.500 

Wilcoxon W 263.000 258.000 249.000 224.000 260.500 

Z -.044 -.241 -.607 -1.718 -.153 

Asymp. Sig. (2-tailed) .965 .809 .544 .086 .879 

Exact Sig. [2*(1-tailed Sig.)] .985b .838b .590b .138b .897b 
 

 

 
Felt 

Happy 

Gave 

Bad Mood 

Thought 

Other Things 

Was 

Tiresome 

Felt 

Competent 

Mann-Whitney U 127.000 104.000 121.000 70.500 111.000 

Wilcoxon W 263.000 240.000 257.000 206.500 247.000 

Z -.044 -1.432 -.366 -2.568 -.739 

Asymp. Sig. (2-tailed) .965 .152 .714 .010 .460 

Exact Sig. [2*(1-tailed Sig.)] .985b .381b .809b .029b .539b 
 

 

 
Was 

Hard 

Was Aesthetically 

Pleasing 

Forgot Everything 

Around 

Felt 

Good 

I Was 

Good 

Mann-Whitney U 95.500 115.000 105.500 111.500 114.000 

Wilcoxon W 231.500 251.000 241.500 247.500 250.000 

Z -1.289 -.554 -.871 -.713 -.613 

Asymp. Sig. (2-tailed) .197 .580 .384 .476 .540 

Exact Sig. [2*(1-tailed Sig.)] .224b .642b .402b .539b .616b 
 

 

 
Felt 

Bored 

Felt 

Successful 

Felt 

Imaginative 

Felt 

Could Explore 
Enjoyed 

Mann-Whitney U 128.000 120.500 117.500 113.500 105.500 

Wilcoxon W 264.000 256.500 253.500 249.500 241.500 

Z .000 -.319 -.417 -.574 -.951 

Asymp. Sig. (2-tailed) 1.000 .749 .676 .566 .341 

Exact Sig. [2*(1-tailed Sig.)] 1.000b .780b .696b .590b .402b 
 

 

 

 



 
Fast 

Reaching Targets 

Felt 

Annoyed 

Felt 

Pressured 

Felt 

Irritable 

Lost 

Time Track 

Mann-Whitney U 119.000 95.000 105.000 126.000 117.500 

Wilcoxon W 255.000 231.000 241.000 262.000 253.500 

Z -.373 -1.650 -.902 -.099 -.411 

Asymp. Sig. (2-tailed) .709 .099 .367 .921 .681 

Exact Sig. [2*(1-tailed Sig.)] .752b .224b .402b .956b .696b 
 

 

 
Felt 

Challenged 

Was 

Impressive 

Was 

Deeply Concentrated 

Felt 

Frustrated 

Mann-Whitney U 96.000 74.000 96.000 83.500 

Wilcoxon W 232.000 210.000 232.000 219.500 

Z -1.324 -2.156 -1.260 -1.905 

Asymp. Sig. (2-tailed) .186 .031 .207 .057 

Exact Sig. [2*(1-tailed Sig.)] .239b .043b .239b .094b 
 

 

 
Was Rich 

Experience 

Lost World 

Connection 

Felt 

Time Pressure 

Put 

Lot Effort 

Mann-Whitney U 96.000 97.000 123.000 126.500 

Wilcoxon W 232.000 233.000 259.000 262.500 

Z -1.279 -1.203 -.197 -.058 

Asymp. Sig. (2-tailed) .201 .229 .844 .954 

Exact Sig. [2*(1-tailed Sig.)] .239b .254b .867b .956b 
 

a. Grouping Variable: Version 

b. Not corrected for ties. 
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